tommath.hpp 30 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782
  1. ///////////////////////////////////////////////////////////////////////////////
  2. // Copyright 2011 John Maddock. Distributed under the Boost
  3. // Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_MP_TOMMATH_BACKEND_HPP
  6. #define BOOST_MATH_MP_TOMMATH_BACKEND_HPP
  7. #include <boost/multiprecision/number.hpp>
  8. #include <boost/multiprecision/rational_adaptor.hpp>
  9. #include <boost/multiprecision/detail/integer_ops.hpp>
  10. #include <boost/math/special_functions/fpclassify.hpp>
  11. #include <boost/cstdint.hpp>
  12. #include <boost/scoped_array.hpp>
  13. #include <boost/functional/hash_fwd.hpp>
  14. #include <tommath.h>
  15. #include <cmath>
  16. #include <limits>
  17. #include <climits>
  18. namespace boost{ namespace multiprecision{ namespace backends{
  19. namespace detail{
  20. inline void check_tommath_result(unsigned v)
  21. {
  22. if(v != MP_OKAY)
  23. {
  24. BOOST_THROW_EXCEPTION(std::runtime_error(mp_error_to_string(v)));
  25. }
  26. }
  27. }
  28. struct tommath_int;
  29. void eval_multiply(tommath_int& t, const tommath_int& o);
  30. void eval_add(tommath_int& t, const tommath_int& o);
  31. struct tommath_int
  32. {
  33. typedef mpl::list<boost::int32_t, boost::long_long_type> signed_types;
  34. typedef mpl::list<boost::uint32_t, boost::ulong_long_type> unsigned_types;
  35. typedef mpl::list<long double> float_types;
  36. tommath_int()
  37. {
  38. detail::check_tommath_result(mp_init(&m_data));
  39. }
  40. tommath_int(const tommath_int& o)
  41. {
  42. detail::check_tommath_result(mp_init_copy(&m_data, const_cast< ::mp_int*>(&o.m_data)));
  43. }
  44. #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES
  45. tommath_int(tommath_int&& o) BOOST_NOEXCEPT
  46. {
  47. m_data = o.m_data;
  48. o.m_data.dp = 0;
  49. }
  50. tommath_int& operator = (tommath_int&& o)
  51. {
  52. mp_exch(&m_data, &o.m_data);
  53. return *this;
  54. }
  55. #endif
  56. tommath_int& operator = (const tommath_int& o)
  57. {
  58. if(m_data.dp == 0)
  59. detail::check_tommath_result(mp_init(&m_data));
  60. if(o.m_data.dp)
  61. detail::check_tommath_result(mp_copy(const_cast< ::mp_int*>(&o.m_data), &m_data));
  62. return *this;
  63. }
  64. tommath_int& operator = (boost::ulong_long_type i)
  65. {
  66. if(m_data.dp == 0)
  67. detail::check_tommath_result(mp_init(&m_data));
  68. boost::ulong_long_type mask = ((1uLL << std::numeric_limits<unsigned>::digits) - 1);
  69. unsigned shift = 0;
  70. ::mp_int t;
  71. detail::check_tommath_result(mp_init(&t));
  72. mp_zero(&m_data);
  73. while(i)
  74. {
  75. detail::check_tommath_result(mp_set_int(&t, static_cast<unsigned>(i & mask)));
  76. if(shift)
  77. detail::check_tommath_result(mp_mul_2d(&t, shift, &t));
  78. detail::check_tommath_result((mp_add(&m_data, &t, &m_data)));
  79. shift += std::numeric_limits<unsigned>::digits;
  80. i >>= std::numeric_limits<unsigned>::digits;
  81. }
  82. mp_clear(&t);
  83. return *this;
  84. }
  85. tommath_int& operator = (boost::long_long_type i)
  86. {
  87. if(m_data.dp == 0)
  88. detail::check_tommath_result(mp_init(&m_data));
  89. bool neg = i < 0;
  90. *this = boost::multiprecision::detail::unsigned_abs(i);
  91. if(neg)
  92. detail::check_tommath_result(mp_neg(&m_data, &m_data));
  93. return *this;
  94. }
  95. //
  96. // Note that although mp_set_int takes an unsigned long as an argument
  97. // it only sets the first 32-bits to the result, and ignores the rest.
  98. // So use uint32_t as the largest type to pass to this function.
  99. //
  100. tommath_int& operator = (boost::uint32_t i)
  101. {
  102. if(m_data.dp == 0)
  103. detail::check_tommath_result(mp_init(&m_data));
  104. detail::check_tommath_result((mp_set_int(&m_data, i)));
  105. return *this;
  106. }
  107. tommath_int& operator = (boost::int32_t i)
  108. {
  109. if(m_data.dp == 0)
  110. detail::check_tommath_result(mp_init(&m_data));
  111. bool neg = i < 0;
  112. *this = boost::multiprecision::detail::unsigned_abs(i);
  113. if(neg)
  114. detail::check_tommath_result(mp_neg(&m_data, &m_data));
  115. return *this;
  116. }
  117. tommath_int& operator = (long double a)
  118. {
  119. using std::frexp;
  120. using std::ldexp;
  121. using std::floor;
  122. if(m_data.dp == 0)
  123. detail::check_tommath_result(mp_init(&m_data));
  124. if (a == 0) {
  125. detail::check_tommath_result(mp_set_int(&m_data, 0));
  126. return *this;
  127. }
  128. if (a == 1) {
  129. detail::check_tommath_result(mp_set_int(&m_data, 1));
  130. return *this;
  131. }
  132. BOOST_ASSERT(!(boost::math::isinf)(a));
  133. BOOST_ASSERT(!(boost::math::isnan)(a));
  134. int e;
  135. long double f, term;
  136. detail::check_tommath_result(mp_set_int(&m_data, 0u));
  137. ::mp_int t;
  138. detail::check_tommath_result(mp_init(&t));
  139. f = frexp(a, &e);
  140. static const int shift = std::numeric_limits<int>::digits - 1;
  141. while(f)
  142. {
  143. // extract int sized bits from f:
  144. f = ldexp(f, shift);
  145. term = floor(f);
  146. e -= shift;
  147. detail::check_tommath_result(mp_mul_2d(&m_data, shift, &m_data));
  148. if(term > 0)
  149. {
  150. detail::check_tommath_result(mp_set_int(&t, static_cast<int>(term)));
  151. detail::check_tommath_result(mp_add(&m_data, &t, &m_data));
  152. }
  153. else
  154. {
  155. detail::check_tommath_result(mp_set_int(&t, static_cast<int>(-term)));
  156. detail::check_tommath_result(mp_sub(&m_data, &t, &m_data));
  157. }
  158. f -= term;
  159. }
  160. if(e > 0)
  161. detail::check_tommath_result(mp_mul_2d(&m_data, e, &m_data));
  162. else if(e < 0)
  163. {
  164. tommath_int t2;
  165. detail::check_tommath_result(mp_div_2d(&m_data, -e, &m_data, &t2.data()));
  166. }
  167. mp_clear(&t);
  168. return *this;
  169. }
  170. tommath_int& operator = (const char* s)
  171. {
  172. //
  173. // We don't use libtommath's own routine because it doesn't error check the input :-(
  174. //
  175. if(m_data.dp == 0)
  176. detail::check_tommath_result(mp_init(&m_data));
  177. std::size_t n = s ? std::strlen(s) : 0;
  178. *this = static_cast<boost::uint32_t>(0u);
  179. unsigned radix = 10;
  180. bool isneg = false;
  181. if(n && (*s == '-'))
  182. {
  183. --n;
  184. ++s;
  185. isneg = true;
  186. }
  187. if(n && (*s == '0'))
  188. {
  189. if((n > 1) && ((s[1] == 'x') || (s[1] == 'X')))
  190. {
  191. radix = 16;
  192. s +=2;
  193. n -= 2;
  194. }
  195. else
  196. {
  197. radix = 8;
  198. n -= 1;
  199. }
  200. }
  201. if(n)
  202. {
  203. if(radix == 8 || radix == 16)
  204. {
  205. unsigned shift = radix == 8 ? 3 : 4;
  206. unsigned block_count = DIGIT_BIT / shift;
  207. unsigned block_shift = shift * block_count;
  208. boost::ulong_long_type val, block;
  209. while(*s)
  210. {
  211. block = 0;
  212. for(unsigned i = 0; (i < block_count); ++i)
  213. {
  214. if(*s >= '0' && *s <= '9')
  215. val = *s - '0';
  216. else if(*s >= 'a' && *s <= 'f')
  217. val = 10 + *s - 'a';
  218. else if(*s >= 'A' && *s <= 'F')
  219. val = 10 + *s - 'A';
  220. else
  221. val = 400;
  222. if(val > radix)
  223. {
  224. BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string."));
  225. }
  226. block <<= shift;
  227. block |= val;
  228. if(!*++s)
  229. {
  230. // final shift is different:
  231. block_shift = (i + 1) * shift;
  232. break;
  233. }
  234. }
  235. detail::check_tommath_result(mp_mul_2d(&data(), block_shift, &data()));
  236. if(data().used)
  237. data().dp[0] |= block;
  238. else
  239. *this = block;
  240. }
  241. }
  242. else
  243. {
  244. // Base 10, we extract blocks of size 10^9 at a time, that way
  245. // the number of multiplications is kept to a minimum:
  246. boost::uint32_t block_mult = 1000000000;
  247. while(*s)
  248. {
  249. boost::uint32_t block = 0;
  250. for(unsigned i = 0; i < 9; ++i)
  251. {
  252. boost::uint32_t val;
  253. if(*s >= '0' && *s <= '9')
  254. val = *s - '0';
  255. else
  256. BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input."));
  257. block *= 10;
  258. block += val;
  259. if(!*++s)
  260. {
  261. static const boost::uint32_t block_multiplier[9] = { 10, 100, 1000, 10000, 100000, 1000000, 10000000, 100000000, 1000000000 };
  262. block_mult = block_multiplier[i];
  263. break;
  264. }
  265. }
  266. tommath_int t;
  267. t = block_mult;
  268. eval_multiply(*this, t);
  269. t = block;
  270. eval_add(*this, t);
  271. }
  272. }
  273. }
  274. if(isneg)
  275. this->negate();
  276. return *this;
  277. }
  278. std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const
  279. {
  280. BOOST_ASSERT(m_data.dp);
  281. int base = 10;
  282. if((f & std::ios_base::oct) == std::ios_base::oct)
  283. base = 8;
  284. else if((f & std::ios_base::hex) == std::ios_base::hex)
  285. base = 16;
  286. //
  287. // sanity check, bases 8 and 16 are only available for positive numbers:
  288. //
  289. if((base != 10) && m_data.sign)
  290. BOOST_THROW_EXCEPTION(std::runtime_error("Formatted output in bases 8 or 16 is only available for positive numbers"));
  291. int s;
  292. detail::check_tommath_result(mp_radix_size(const_cast< ::mp_int*>(&m_data), base, &s));
  293. boost::scoped_array<char> a(new char[s+1]);
  294. detail::check_tommath_result(mp_toradix_n(const_cast< ::mp_int*>(&m_data), a.get(), base, s+1));
  295. std::string result = a.get();
  296. if((base != 10) && (f & std::ios_base::showbase))
  297. {
  298. int pos = result[0] == '-' ? 1 : 0;
  299. const char* pp = base == 8 ? "0" : "0x";
  300. result.insert(static_cast<std::string::size_type>(pos), pp);
  301. }
  302. if((f & std::ios_base::showpos) && (result[0] != '-'))
  303. result.insert(static_cast<std::string::size_type>(0), 1, '+');
  304. return result;
  305. }
  306. ~tommath_int()
  307. {
  308. if(m_data.dp)
  309. mp_clear(&m_data);
  310. }
  311. void negate()
  312. {
  313. BOOST_ASSERT(m_data.dp);
  314. mp_neg(&m_data, &m_data);
  315. }
  316. int compare(const tommath_int& o)const
  317. {
  318. BOOST_ASSERT(m_data.dp && o.m_data.dp);
  319. return mp_cmp(const_cast< ::mp_int*>(&m_data), const_cast< ::mp_int*>(&o.m_data));
  320. }
  321. template <class V>
  322. int compare(V v)const
  323. {
  324. tommath_int d;
  325. tommath_int t(*this);
  326. detail::check_tommath_result(mp_shrink(&t.data()));
  327. d = v;
  328. return t.compare(d);
  329. }
  330. ::mp_int& data()
  331. {
  332. BOOST_ASSERT(m_data.dp);
  333. return m_data;
  334. }
  335. const ::mp_int& data()const
  336. {
  337. BOOST_ASSERT(m_data.dp);
  338. return m_data;
  339. }
  340. void swap(tommath_int& o)BOOST_NOEXCEPT
  341. {
  342. mp_exch(&m_data, &o.data());
  343. }
  344. protected:
  345. ::mp_int m_data;
  346. };
  347. #define BOOST_MP_TOMMATH_BIT_OP_CHECK(x)\
  348. if(SIGN(&x.data()))\
  349. BOOST_THROW_EXCEPTION(std::runtime_error("Bitwise operations on libtommath negative valued integers are disabled as they produce unpredictable results"))
  350. int eval_get_sign(const tommath_int& val);
  351. inline void eval_add(tommath_int& t, const tommath_int& o)
  352. {
  353. detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  354. }
  355. inline void eval_subtract(tommath_int& t, const tommath_int& o)
  356. {
  357. detail::check_tommath_result(mp_sub(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  358. }
  359. inline void eval_multiply(tommath_int& t, const tommath_int& o)
  360. {
  361. detail::check_tommath_result(mp_mul(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  362. }
  363. inline void eval_divide(tommath_int& t, const tommath_int& o)
  364. {
  365. using default_ops::eval_is_zero;
  366. tommath_int temp;
  367. if(eval_is_zero(o))
  368. BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
  369. detail::check_tommath_result(mp_div(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data(), &temp.data()));
  370. }
  371. inline void eval_modulus(tommath_int& t, const tommath_int& o)
  372. {
  373. using default_ops::eval_is_zero;
  374. if(eval_is_zero(o))
  375. BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
  376. bool neg = eval_get_sign(t) < 0;
  377. bool neg2 = eval_get_sign(o) < 0;
  378. detail::check_tommath_result(mp_mod(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  379. if((neg != neg2) && (eval_get_sign(t) != 0))
  380. {
  381. t.negate();
  382. detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  383. t.negate();
  384. }
  385. else if(neg && (t.compare(o) == 0))
  386. {
  387. mp_zero(&t.data());
  388. }
  389. }
  390. template <class UI>
  391. inline void eval_left_shift(tommath_int& t, UI i)
  392. {
  393. detail::check_tommath_result(mp_mul_2d(&t.data(), static_cast<unsigned>(i), &t.data()));
  394. }
  395. template <class UI>
  396. inline void eval_right_shift(tommath_int& t, UI i)
  397. {
  398. using default_ops::eval_increment;
  399. using default_ops::eval_decrement;
  400. bool neg = eval_get_sign(t) < 0;
  401. tommath_int d;
  402. if(neg)
  403. eval_increment(t);
  404. detail::check_tommath_result(mp_div_2d(&t.data(), static_cast<unsigned>(i), &t.data(), &d.data()));
  405. if(neg)
  406. eval_decrement(t);
  407. }
  408. template <class UI>
  409. inline void eval_left_shift(tommath_int& t, const tommath_int& v, UI i)
  410. {
  411. detail::check_tommath_result(mp_mul_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned>(i), &t.data()));
  412. }
  413. /*
  414. template <class UI>
  415. inline void eval_right_shift(tommath_int& t, const tommath_int& v, UI i)
  416. {
  417. tommath_int d;
  418. detail::check_tommath_result(mp_div_2d(const_cast< ::mp_int*>(&v.data()), static_cast<unsigned long>(i), &t.data(), &d.data()));
  419. }
  420. */
  421. inline void eval_bitwise_and(tommath_int& result, const tommath_int& v)
  422. {
  423. BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
  424. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  425. detail::check_tommath_result(mp_and(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
  426. }
  427. inline void eval_bitwise_or(tommath_int& result, const tommath_int& v)
  428. {
  429. BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
  430. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  431. detail::check_tommath_result(mp_or(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
  432. }
  433. inline void eval_bitwise_xor(tommath_int& result, const tommath_int& v)
  434. {
  435. BOOST_MP_TOMMATH_BIT_OP_CHECK(result);
  436. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  437. detail::check_tommath_result(mp_xor(&result.data(), const_cast< ::mp_int*>(&v.data()), &result.data()));
  438. }
  439. inline void eval_add(tommath_int& t, const tommath_int& p, const tommath_int& o)
  440. {
  441. detail::check_tommath_result(mp_add(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
  442. }
  443. inline void eval_subtract(tommath_int& t, const tommath_int& p, const tommath_int& o)
  444. {
  445. detail::check_tommath_result(mp_sub(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
  446. }
  447. inline void eval_multiply(tommath_int& t, const tommath_int& p, const tommath_int& o)
  448. {
  449. detail::check_tommath_result(mp_mul(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
  450. }
  451. inline void eval_divide(tommath_int& t, const tommath_int& p, const tommath_int& o)
  452. {
  453. using default_ops::eval_is_zero;
  454. tommath_int d;
  455. if(eval_is_zero(o))
  456. BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
  457. detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data(), &d.data()));
  458. }
  459. inline void eval_modulus(tommath_int& t, const tommath_int& p, const tommath_int& o)
  460. {
  461. using default_ops::eval_is_zero;
  462. if(eval_is_zero(o))
  463. BOOST_THROW_EXCEPTION(std::overflow_error("Integer division by zero"));
  464. bool neg = eval_get_sign(p) < 0;
  465. bool neg2 = eval_get_sign(o) < 0;
  466. detail::check_tommath_result(mp_mod(const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&o.data()), &t.data()));
  467. if((neg != neg2) && (eval_get_sign(t) != 0))
  468. {
  469. t.negate();
  470. detail::check_tommath_result(mp_add(&t.data(), const_cast< ::mp_int*>(&o.data()), &t.data()));
  471. t.negate();
  472. }
  473. else if(neg && (t.compare(o) == 0))
  474. {
  475. mp_zero(&t.data());
  476. }
  477. }
  478. inline void eval_bitwise_and(tommath_int& result, const tommath_int& u, const tommath_int& v)
  479. {
  480. BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
  481. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  482. detail::check_tommath_result(mp_and(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
  483. }
  484. inline void eval_bitwise_or(tommath_int& result, const tommath_int& u, const tommath_int& v)
  485. {
  486. BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
  487. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  488. detail::check_tommath_result(mp_or(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
  489. }
  490. inline void eval_bitwise_xor(tommath_int& result, const tommath_int& u, const tommath_int& v)
  491. {
  492. BOOST_MP_TOMMATH_BIT_OP_CHECK(u);
  493. BOOST_MP_TOMMATH_BIT_OP_CHECK(v);
  494. detail::check_tommath_result(mp_xor(const_cast< ::mp_int*>(&u.data()), const_cast< ::mp_int*>(&v.data()), &result.data()));
  495. }
  496. /*
  497. inline void eval_complement(tommath_int& result, const tommath_int& u)
  498. {
  499. //
  500. // Although this code works, it doesn't really do what the user might expect....
  501. // and it's hard to see how it ever could. Disabled for now:
  502. //
  503. result = u;
  504. for(int i = 0; i < result.data().used; ++i)
  505. {
  506. result.data().dp[i] = MP_MASK & ~(result.data().dp[i]);
  507. }
  508. //
  509. // We now need to pad out the left of the value with 1's to round up to a whole number of
  510. // CHAR_BIT * sizeof(mp_digit) units. Otherwise we'll end up with a very strange number of
  511. // bits set!
  512. //
  513. unsigned shift = result.data().used * DIGIT_BIT; // How many bits we're actually using
  514. // How many bits we actually need, reduced by one to account for a mythical sign bit:
  515. int padding = result.data().used * std::numeric_limits<mp_digit>::digits - shift - 1;
  516. while(padding >= std::numeric_limits<mp_digit>::digits)
  517. padding -= std::numeric_limits<mp_digit>::digits;
  518. // Create a mask providing the extra bits we need and add to result:
  519. tommath_int mask;
  520. mask = static_cast<boost::long_long_type>((1u << padding) - 1);
  521. eval_left_shift(mask, shift);
  522. add(result, mask);
  523. }
  524. */
  525. inline bool eval_is_zero(const tommath_int& val)
  526. {
  527. return mp_iszero(&val.data());
  528. }
  529. inline int eval_get_sign(const tommath_int& val)
  530. {
  531. return mp_iszero(&val.data()) ? 0 : SIGN(&val.data()) ? -1 : 1;
  532. }
  533. /*
  534. template <class A>
  535. inline void eval_convert_to(A* result, const tommath_int& val)
  536. {
  537. *result = boost::lexical_cast<A>(val.str(0, std::ios_base::fmtflags(0)));
  538. }
  539. inline void eval_convert_to(char* result, const tommath_int& val)
  540. {
  541. *result = static_cast<char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
  542. }
  543. inline void eval_convert_to(unsigned char* result, const tommath_int& val)
  544. {
  545. *result = static_cast<unsigned char>(boost::lexical_cast<unsigned>(val.str(0, std::ios_base::fmtflags(0))));
  546. }
  547. inline void eval_convert_to(signed char* result, const tommath_int& val)
  548. {
  549. *result = static_cast<signed char>(boost::lexical_cast<int>(val.str(0, std::ios_base::fmtflags(0))));
  550. }
  551. */
  552. inline void eval_abs(tommath_int& result, const tommath_int& val)
  553. {
  554. detail::check_tommath_result(mp_abs(const_cast< ::mp_int*>(&val.data()), &result.data()));
  555. }
  556. inline void eval_gcd(tommath_int& result, const tommath_int& a, const tommath_int& b)
  557. {
  558. detail::check_tommath_result(mp_gcd(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
  559. }
  560. inline void eval_lcm(tommath_int& result, const tommath_int& a, const tommath_int& b)
  561. {
  562. detail::check_tommath_result(mp_lcm(const_cast< ::mp_int*>(&a.data()), const_cast< ::mp_int*>(&b.data()), const_cast< ::mp_int*>(&result.data())));
  563. }
  564. inline void eval_powm(tommath_int& result, const tommath_int& base, const tommath_int& p, const tommath_int& m)
  565. {
  566. if(eval_get_sign(p) < 0)
  567. {
  568. BOOST_THROW_EXCEPTION(std::runtime_error("powm requires a positive exponent."));
  569. }
  570. detail::check_tommath_result(mp_exptmod(const_cast< ::mp_int*>(&base.data()), const_cast< ::mp_int*>(&p.data()), const_cast< ::mp_int*>(&m.data()), &result.data()));
  571. }
  572. inline void eval_qr(const tommath_int& x, const tommath_int& y,
  573. tommath_int& q, tommath_int& r)
  574. {
  575. detail::check_tommath_result(mp_div(const_cast< ::mp_int*>(&x.data()), const_cast< ::mp_int*>(&y.data()), &q.data(), &r.data()));
  576. }
  577. inline unsigned eval_lsb(const tommath_int& val)
  578. {
  579. int c = eval_get_sign(val);
  580. if(c == 0)
  581. {
  582. BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
  583. }
  584. if(c < 0)
  585. {
  586. BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
  587. }
  588. return mp_cnt_lsb(const_cast< ::mp_int*>(&val.data()));
  589. }
  590. inline unsigned eval_msb(const tommath_int& val)
  591. {
  592. int c = eval_get_sign(val);
  593. if(c == 0)
  594. {
  595. BOOST_THROW_EXCEPTION(std::range_error("No bits were set in the operand."));
  596. }
  597. if(c < 0)
  598. {
  599. BOOST_THROW_EXCEPTION(std::range_error("Testing individual bits in negative values is not supported - results are undefined."));
  600. }
  601. return mp_count_bits(const_cast< ::mp_int*>(&val.data())) - 1;
  602. }
  603. template <class Integer>
  604. inline typename enable_if<is_unsigned<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
  605. {
  606. static const mp_digit m = (static_cast<mp_digit>(1) << DIGIT_BIT) - 1;
  607. if(val <= m)
  608. {
  609. mp_digit d;
  610. detail::check_tommath_result(mp_mod_d(const_cast< ::mp_int*>(&x.data()), static_cast<mp_digit>(val), &d));
  611. return d;
  612. }
  613. else
  614. {
  615. return default_ops::eval_integer_modulus(x, val);
  616. }
  617. }
  618. template <class Integer>
  619. inline typename enable_if<is_signed<Integer>, Integer>::type eval_integer_modulus(const tommath_int& x, Integer val)
  620. {
  621. return eval_integer_modulus(x, boost::multiprecision::detail::unsigned_abs(val));
  622. }
  623. inline std::size_t hash_value(const tommath_int& val)
  624. {
  625. std::size_t result = 0;
  626. std::size_t len = val.data().used;
  627. for(std::size_t i = 0; i < len; ++i)
  628. boost::hash_combine(result, val.data().dp[i]);
  629. boost::hash_combine(result, val.data().sign);
  630. return result;
  631. }
  632. } // namespace backends
  633. using boost::multiprecision::backends::tommath_int;
  634. template<>
  635. struct number_category<tommath_int> : public mpl::int_<number_kind_integer>{};
  636. typedef number<tommath_int > tom_int;
  637. typedef rational_adaptor<tommath_int> tommath_rational;
  638. typedef number<tommath_rational> tom_rational;
  639. }} // namespaces
  640. namespace std{
  641. template<boost::multiprecision::expression_template_option ExpressionTemplates>
  642. class numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >
  643. {
  644. typedef boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> number_type;
  645. public:
  646. BOOST_STATIC_CONSTEXPR bool is_specialized = true;
  647. //
  648. // Largest and smallest numbers are bounded only by available memory, set
  649. // to zero:
  650. //
  651. static number_type (min)()
  652. {
  653. return number_type();
  654. }
  655. static number_type (max)()
  656. {
  657. return number_type();
  658. }
  659. static number_type lowest() { return (min)(); }
  660. BOOST_STATIC_CONSTEXPR int digits = INT_MAX;
  661. BOOST_STATIC_CONSTEXPR int digits10 = (INT_MAX / 1000) * 301L;
  662. BOOST_STATIC_CONSTEXPR int max_digits10 = digits10 + 3;
  663. BOOST_STATIC_CONSTEXPR bool is_signed = true;
  664. BOOST_STATIC_CONSTEXPR bool is_integer = true;
  665. BOOST_STATIC_CONSTEXPR bool is_exact = true;
  666. BOOST_STATIC_CONSTEXPR int radix = 2;
  667. static number_type epsilon() { return number_type(); }
  668. static number_type round_error() { return number_type(); }
  669. BOOST_STATIC_CONSTEXPR int min_exponent = 0;
  670. BOOST_STATIC_CONSTEXPR int min_exponent10 = 0;
  671. BOOST_STATIC_CONSTEXPR int max_exponent = 0;
  672. BOOST_STATIC_CONSTEXPR int max_exponent10 = 0;
  673. BOOST_STATIC_CONSTEXPR bool has_infinity = false;
  674. BOOST_STATIC_CONSTEXPR bool has_quiet_NaN = false;
  675. BOOST_STATIC_CONSTEXPR bool has_signaling_NaN = false;
  676. BOOST_STATIC_CONSTEXPR float_denorm_style has_denorm = denorm_absent;
  677. BOOST_STATIC_CONSTEXPR bool has_denorm_loss = false;
  678. static number_type infinity() { return number_type(); }
  679. static number_type quiet_NaN() { return number_type(); }
  680. static number_type signaling_NaN() { return number_type(); }
  681. static number_type denorm_min() { return number_type(); }
  682. BOOST_STATIC_CONSTEXPR bool is_iec559 = false;
  683. BOOST_STATIC_CONSTEXPR bool is_bounded = false;
  684. BOOST_STATIC_CONSTEXPR bool is_modulo = false;
  685. BOOST_STATIC_CONSTEXPR bool traps = false;
  686. BOOST_STATIC_CONSTEXPR bool tinyness_before = false;
  687. BOOST_STATIC_CONSTEXPR float_round_style round_style = round_toward_zero;
  688. };
  689. #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION
  690. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  691. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits;
  692. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  693. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::digits10;
  694. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  695. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_digits10;
  696. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  697. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_signed;
  698. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  699. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_integer;
  700. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  701. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_exact;
  702. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  703. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::radix;
  704. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  705. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent;
  706. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  707. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::min_exponent10;
  708. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  709. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent;
  710. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  711. BOOST_CONSTEXPR_OR_CONST int numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::max_exponent10;
  712. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  713. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_infinity;
  714. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  715. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_quiet_NaN;
  716. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  717. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_signaling_NaN;
  718. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  719. BOOST_CONSTEXPR_OR_CONST float_denorm_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm;
  720. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  721. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::has_denorm_loss;
  722. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  723. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_iec559;
  724. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  725. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_bounded;
  726. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  727. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::is_modulo;
  728. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  729. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::traps;
  730. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  731. BOOST_CONSTEXPR_OR_CONST bool numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::tinyness_before;
  732. template <boost::multiprecision::expression_template_option ExpressionTemplates>
  733. BOOST_CONSTEXPR_OR_CONST float_round_style numeric_limits<boost::multiprecision::number<boost::multiprecision::tommath_int, ExpressionTemplates> >::round_style;
  734. #endif
  735. }
  736. #endif