differential_quantities.hpp 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305
  1. // Boost.Geometry
  2. // Copyright (c) 2016-2019 Oracle and/or its affiliates.
  3. // Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
  4. // Use, modification and distribution is subject to the Boost Software License,
  5. // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  6. // http://www.boost.org/LICENSE_1_0.txt)
  7. #ifndef BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
  8. #define BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP
  9. #include <boost/geometry/util/condition.hpp>
  10. #include <boost/geometry/util/math.hpp>
  11. namespace boost { namespace geometry { namespace formula
  12. {
  13. /*!
  14. \brief The solution of a part of the inverse problem - differential quantities.
  15. \author See
  16. - Charles F.F Karney, Algorithms for geodesics, 2011
  17. https://arxiv.org/pdf/1109.4448.pdf
  18. */
  19. template <
  20. typename CT,
  21. bool EnableReducedLength,
  22. bool EnableGeodesicScale,
  23. unsigned int Order = 2,
  24. bool ApproxF = true
  25. >
  26. class differential_quantities
  27. {
  28. public:
  29. static inline void apply(CT const& lon1, CT const& lat1,
  30. CT const& lon2, CT const& lat2,
  31. CT const& azimuth, CT const& reverse_azimuth,
  32. CT const& b, CT const& f,
  33. CT & reduced_length, CT & geodesic_scale)
  34. {
  35. CT const dlon = lon2 - lon1;
  36. CT const sin_lat1 = sin(lat1);
  37. CT const cos_lat1 = cos(lat1);
  38. CT const sin_lat2 = sin(lat2);
  39. CT const cos_lat2 = cos(lat2);
  40. apply(dlon, sin_lat1, cos_lat1, sin_lat2, cos_lat2,
  41. azimuth, reverse_azimuth,
  42. b, f,
  43. reduced_length, geodesic_scale);
  44. }
  45. static inline void apply(CT const& dlon,
  46. CT const& sin_lat1, CT const& cos_lat1,
  47. CT const& sin_lat2, CT const& cos_lat2,
  48. CT const& azimuth, CT const& reverse_azimuth,
  49. CT const& b, CT const& f,
  50. CT & reduced_length, CT & geodesic_scale)
  51. {
  52. CT const c0 = 0;
  53. CT const c1 = 1;
  54. CT const one_minus_f = c1 - f;
  55. CT sin_bet1 = one_minus_f * sin_lat1;
  56. CT sin_bet2 = one_minus_f * sin_lat2;
  57. // equator
  58. if (math::equals(sin_bet1, c0) && math::equals(sin_bet2, c0))
  59. {
  60. CT const sig_12 = dlon / one_minus_f;
  61. if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
  62. {
  63. int azi_sign = math::sign(azimuth) >= 0 ? 1 : -1; // for antipodal
  64. CT m12 = azi_sign * sin(sig_12) * b;
  65. reduced_length = m12;
  66. }
  67. if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
  68. {
  69. CT M12 = cos(sig_12);
  70. geodesic_scale = M12;
  71. }
  72. }
  73. else
  74. {
  75. CT const c2 = 2;
  76. CT const e2 = f * (c2 - f);
  77. CT const ep2 = e2 / math::sqr(one_minus_f);
  78. CT const sin_alp1 = sin(azimuth);
  79. CT const cos_alp1 = cos(azimuth);
  80. //CT const sin_alp2 = sin(reverse_azimuth);
  81. CT const cos_alp2 = cos(reverse_azimuth);
  82. CT cos_bet1 = cos_lat1;
  83. CT cos_bet2 = cos_lat2;
  84. normalize(sin_bet1, cos_bet1);
  85. normalize(sin_bet2, cos_bet2);
  86. CT sin_sig1 = sin_bet1;
  87. CT cos_sig1 = cos_alp1 * cos_bet1;
  88. CT sin_sig2 = sin_bet2;
  89. CT cos_sig2 = cos_alp2 * cos_bet2;
  90. normalize(sin_sig1, cos_sig1);
  91. normalize(sin_sig2, cos_sig2);
  92. CT const sin_alp0 = sin_alp1 * cos_bet1;
  93. CT const cos_alp0_sqr = c1 - math::sqr(sin_alp0);
  94. CT const J12 = BOOST_GEOMETRY_CONDITION(ApproxF) ?
  95. J12_f(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, f) :
  96. J12_ep_sqr(sin_sig1, cos_sig1, sin_sig2, cos_sig2, cos_alp0_sqr, ep2) ;
  97. CT const dn1 = math::sqrt(c1 + ep2 * math::sqr(sin_bet1));
  98. CT const dn2 = math::sqrt(c1 + ep2 * math::sqr(sin_bet2));
  99. if (BOOST_GEOMETRY_CONDITION(EnableReducedLength))
  100. {
  101. CT const m12_b = dn2 * (cos_sig1 * sin_sig2)
  102. - dn1 * (sin_sig1 * cos_sig2)
  103. - cos_sig1 * cos_sig2 * J12;
  104. CT const m12 = m12_b * b;
  105. reduced_length = m12;
  106. }
  107. if (BOOST_GEOMETRY_CONDITION(EnableGeodesicScale))
  108. {
  109. CT const cos_sig12 = cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2;
  110. CT const t = ep2 * (cos_bet1 - cos_bet2) * (cos_bet1 + cos_bet2) / (dn1 + dn2);
  111. CT const M12 = cos_sig12 + (t * sin_sig2 - cos_sig2 * J12) * sin_sig1 / dn1;
  112. geodesic_scale = M12;
  113. }
  114. }
  115. }
  116. private:
  117. /*! Approximation of J12, expanded into taylor series in f
  118. Maxima script:
  119. ep2: f * (2-f) / ((1-f)^2);
  120. k2: ca02 * ep2;
  121. assume(f < 1);
  122. assume(sig > 0);
  123. I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
  124. I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
  125. J(sig):= I1(sig) - I2(sig);
  126. S: taylor(J(sig), f, 0, 3);
  127. S1: factor( 2*integrate(sin(s)^2,s,0,sig)*ca02*f );
  128. S2: factor( ((integrate(-6*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig)+integrate(-2*ca02^2*sin(s)^4+6*ca02*sin(s)^2,s,0,sig))*f^2)/4 );
  129. S3: factor( ((integrate(30*ca02^3*sin(s)^6-54*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig)+integrate(6*ca02^3*sin(s)^6-18*ca02^2*sin(s)^4+24*ca02*sin(s)^2,s,0,sig))*f^3)/12 );
  130. */
  131. static inline CT J12_f(CT const& sin_sig1, CT const& cos_sig1,
  132. CT const& sin_sig2, CT const& cos_sig2,
  133. CT const& cos_alp0_sqr, CT const& f)
  134. {
  135. if (Order == 0)
  136. {
  137. return 0;
  138. }
  139. CT const c2 = 2;
  140. CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
  141. cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2);
  142. CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
  143. CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
  144. CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
  145. CT const L1 = sig_12 - sin_2sig_12 / c2;
  146. if (Order == 1)
  147. {
  148. return cos_alp0_sqr * f * L1;
  149. }
  150. CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
  151. CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
  152. CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
  153. CT const c8 = 8;
  154. CT const c12 = 12;
  155. CT const c16 = 16;
  156. CT const c24 = 24;
  157. CT const L2 = -( cos_alp0_sqr * sin_4sig_12
  158. + (-c8 * cos_alp0_sqr + c12) * sin_2sig_12
  159. + (c12 * cos_alp0_sqr - c24) * sig_12)
  160. / c16;
  161. if (Order == 2)
  162. {
  163. return cos_alp0_sqr * f * (L1 + f * L2);
  164. }
  165. CT const c4 = 4;
  166. CT const c9 = 9;
  167. CT const c48 = 48;
  168. CT const c60 = 60;
  169. CT const c64 = 64;
  170. CT const c96 = 96;
  171. CT const c128 = 128;
  172. CT const c144 = 144;
  173. CT const cos_alp0_quad = math::sqr(cos_alp0_sqr);
  174. CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
  175. CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
  176. CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
  177. CT const A = (c9 * cos_alp0_quad - c12 * cos_alp0_sqr) * sin_4sig_12;
  178. CT const B = c4 * cos_alp0_quad * sin3_2sig_12;
  179. CT const C = (-c48 * cos_alp0_quad + c96 * cos_alp0_sqr - c64) * sin_2sig_12;
  180. CT const D = (c60 * cos_alp0_quad - c144 * cos_alp0_sqr + c128) * sig_12;
  181. CT const L3 = (A + B + C + D) / c64;
  182. // Order 3 and higher
  183. return cos_alp0_sqr * f * (L1 + f * (L2 + f * L3));
  184. }
  185. /*! Approximation of J12, expanded into taylor series in e'^2
  186. Maxima script:
  187. k2: ca02 * ep2;
  188. assume(sig > 0);
  189. I1(sig):= integrate(sqrt(1 + k2 * sin(s)^2), s, 0, sig);
  190. I2(sig):= integrate(1/sqrt(1 + k2 * sin(s)^2), s, 0, sig);
  191. J(sig):= I1(sig) - I2(sig);
  192. S: taylor(J(sig), ep2, 0, 3);
  193. S1: factor( integrate(sin(s)^2,s,0,sig)*ca02*ep2 );
  194. S2: factor( (integrate(sin(s)^4,s,0,sig)*ca02^2*ep2^2)/2 );
  195. S3: factor( (3*integrate(sin(s)^6,s,0,sig)*ca02^3*ep2^3)/8 );
  196. */
  197. static inline CT J12_ep_sqr(CT const& sin_sig1, CT const& cos_sig1,
  198. CT const& sin_sig2, CT const& cos_sig2,
  199. CT const& cos_alp0_sqr, CT const& ep_sqr)
  200. {
  201. if (Order == 0)
  202. {
  203. return 0;
  204. }
  205. CT const c2 = 2;
  206. CT const c4 = 4;
  207. CT const c2a0ep2 = cos_alp0_sqr * ep_sqr;
  208. CT const sig_12 = atan2(cos_sig1 * sin_sig2 - sin_sig1 * cos_sig2,
  209. cos_sig1 * cos_sig2 + sin_sig1 * sin_sig2); // sig2 - sig1
  210. CT const sin_2sig1 = c2 * cos_sig1 * sin_sig1; // sin(2sig1)
  211. CT const sin_2sig2 = c2 * cos_sig2 * sin_sig2; // sin(2sig2)
  212. CT const sin_2sig_12 = sin_2sig2 - sin_2sig1;
  213. CT const L1 = (c2 * sig_12 - sin_2sig_12) / c4;
  214. if (Order == 1)
  215. {
  216. return c2a0ep2 * L1;
  217. }
  218. CT const c8 = 8;
  219. CT const c64 = 64;
  220. CT const sin_4sig1 = c2 * sin_2sig1 * (math::sqr(cos_sig1) - math::sqr(sin_sig1)); // sin(4sig1)
  221. CT const sin_4sig2 = c2 * sin_2sig2 * (math::sqr(cos_sig2) - math::sqr(sin_sig2)); // sin(4sig2)
  222. CT const sin_4sig_12 = sin_4sig2 - sin_4sig1;
  223. CT const L2 = (sin_4sig_12 - c8 * sin_2sig_12 + 12 * sig_12) / c64;
  224. if (Order == 2)
  225. {
  226. return c2a0ep2 * (L1 + c2a0ep2 * L2);
  227. }
  228. CT const sin3_2sig1 = math::sqr(sin_2sig1) * sin_2sig1;
  229. CT const sin3_2sig2 = math::sqr(sin_2sig2) * sin_2sig2;
  230. CT const sin3_2sig_12 = sin3_2sig2 - sin3_2sig1;
  231. CT const c9 = 9;
  232. CT const c48 = 48;
  233. CT const c60 = 60;
  234. CT const c512 = 512;
  235. CT const L3 = (c9 * sin_4sig_12 + c4 * sin3_2sig_12 - c48 * sin_2sig_12 + c60 * sig_12) / c512;
  236. // Order 3 and higher
  237. return c2a0ep2 * (L1 + c2a0ep2 * (L2 + c2a0ep2 * L3));
  238. }
  239. static inline void normalize(CT & x, CT & y)
  240. {
  241. CT const len = math::sqrt(math::sqr(x) + math::sqr(y));
  242. x /= len;
  243. y /= len;
  244. }
  245. };
  246. }}} // namespace boost::geometry::formula
  247. #endif // BOOST_GEOMETRY_FORMULAS_INVERSE_DIFFERENTIAL_QUANTITIES_HPP