| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081 |
- // Copyright John Maddock 2006-7, 2013-14.
- // Copyright Paul A. Bristow 2007, 2013-14.
- // Copyright Nikhar Agrawal 2013-14
- // Copyright Christopher Kormanyos 2013-14
- // Use, modification and distribution are subject to the
- // Boost Software License, Version 1.0. (See accompanying file
- // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
- #ifndef BOOST_MATH_SF_GAMMA_HPP
- #define BOOST_MATH_SF_GAMMA_HPP
- #ifdef _MSC_VER
- #pragma once
- #endif
- #include <boost/config.hpp>
- #include <boost/math/tools/series.hpp>
- #include <boost/math/tools/fraction.hpp>
- #include <boost/math/tools/precision.hpp>
- #include <boost/math/tools/promotion.hpp>
- #include <boost/math/policies/error_handling.hpp>
- #include <boost/math/constants/constants.hpp>
- #include <boost/math/special_functions/math_fwd.hpp>
- #include <boost/math/special_functions/log1p.hpp>
- #include <boost/math/special_functions/trunc.hpp>
- #include <boost/math/special_functions/powm1.hpp>
- #include <boost/math/special_functions/sqrt1pm1.hpp>
- #include <boost/math/special_functions/lanczos.hpp>
- #include <boost/math/special_functions/fpclassify.hpp>
- #include <boost/math/special_functions/detail/igamma_large.hpp>
- #include <boost/math/special_functions/detail/unchecked_factorial.hpp>
- #include <boost/math/special_functions/detail/lgamma_small.hpp>
- #include <boost/math/special_functions/bernoulli.hpp>
- #include <boost/math/special_functions/zeta.hpp>
- #include <boost/type_traits/is_convertible.hpp>
- #include <boost/assert.hpp>
- #include <boost/mpl/greater.hpp>
- #include <boost/mpl/equal_to.hpp>
- #include <boost/mpl/greater.hpp>
- #include <boost/config/no_tr1/cmath.hpp>
- #include <algorithm>
- #ifdef BOOST_MSVC
- # pragma warning(push)
- # pragma warning(disable: 4702) // unreachable code (return after domain_error throw).
- # pragma warning(disable: 4127) // conditional expression is constant.
- # pragma warning(disable: 4100) // unreferenced formal parameter.
- // Several variables made comments,
- // but some difficulty as whether referenced on not may depend on macro values.
- // So to be safe, 4100 warnings suppressed.
- // TODO - revisit this?
- #endif
- namespace boost{ namespace math{
- namespace detail{
- template <class T>
- inline bool is_odd(T v, const boost::true_type&)
- {
- int i = static_cast<int>(v);
- return i&1;
- }
- template <class T>
- inline bool is_odd(T v, const boost::false_type&)
- {
- // Oh dear can't cast T to int!
- BOOST_MATH_STD_USING
- T modulus = v - 2 * floor(v/2);
- return static_cast<bool>(modulus != 0);
- }
- template <class T>
- inline bool is_odd(T v)
- {
- return is_odd(v, ::boost::is_convertible<T, int>());
- }
- template <class T>
- T sinpx(T z)
- {
- // Ad hoc function calculates x * sin(pi * x),
- // taking extra care near when x is near a whole number.
- BOOST_MATH_STD_USING
- int sign = 1;
- if(z < 0)
- {
- z = -z;
- }
- T fl = floor(z);
- T dist;
- if(is_odd(fl))
- {
- fl += 1;
- dist = fl - z;
- sign = -sign;
- }
- else
- {
- dist = z - fl;
- }
- BOOST_ASSERT(fl >= 0);
- if(dist > 0.5)
- dist = 1 - dist;
- T result = sin(dist*boost::math::constants::pi<T>());
- return sign*z*result;
- } // template <class T> T sinpx(T z)
- //
- // tgamma(z), with Lanczos support:
- //
- template <class T, class Policy, class Lanczos>
- T gamma_imp(T z, const Policy& pol, const Lanczos& l)
- {
- BOOST_MATH_STD_USING
- T result = 1;
- #ifdef BOOST_MATH_INSTRUMENT
- static bool b = false;
- if(!b)
- {
- std::cout << "tgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
- b = true;
- }
- #endif
- static const char* function = "boost::math::tgamma<%1%>(%1%)";
- if(z <= 0)
- {
- if(floor(z) == z)
- return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
- if(z <= -20)
- {
- result = gamma_imp(T(-z), pol, l) * sinpx(z);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- if((fabs(result) < 1) && (tools::max_value<T>() * fabs(result) < boost::math::constants::pi<T>()))
- return -boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
- result = -boost::math::constants::pi<T>() / result;
- if(result == 0)
- return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
- if((boost::math::fpclassify)(result) == (int)FP_SUBNORMAL)
- return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", result, pol);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- return result;
- }
- // shift z to > 1:
- while(z < 0)
- {
- result /= z;
- z += 1;
- }
- }
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- if((floor(z) == z) && (z < max_factorial<T>::value))
- {
- result *= unchecked_factorial<T>(itrunc(z, pol) - 1);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else if (z < tools::root_epsilon<T>())
- {
- if (z < 1 / tools::max_value<T>())
- result = policies::raise_overflow_error<T>(function, 0, pol);
- result *= 1 / z - constants::euler<T>();
- }
- else
- {
- result *= Lanczos::lanczos_sum(z);
- T zgh = (z + static_cast<T>(Lanczos::g()) - boost::math::constants::half<T>());
- T lzgh = log(zgh);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- BOOST_MATH_INSTRUMENT_VARIABLE(tools::log_max_value<T>());
- if(z * lzgh > tools::log_max_value<T>())
- {
- // we're going to overflow unless this is done with care:
- BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
- if(lzgh * z / 2 > tools::log_max_value<T>())
- return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
- T hp = pow(zgh, (z / 2) - T(0.25));
- BOOST_MATH_INSTRUMENT_VARIABLE(hp);
- result *= hp / exp(zgh);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- if(tools::max_value<T>() / hp < result)
- return boost::math::sign(result) * policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
- result *= hp;
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- else
- {
- BOOST_MATH_INSTRUMENT_VARIABLE(zgh);
- BOOST_MATH_INSTRUMENT_VARIABLE(pow(zgh, z - boost::math::constants::half<T>()));
- BOOST_MATH_INSTRUMENT_VARIABLE(exp(zgh));
- result *= pow(zgh, z - boost::math::constants::half<T>()) / exp(zgh);
- BOOST_MATH_INSTRUMENT_VARIABLE(result);
- }
- }
- return result;
- }
- //
- // lgamma(z) with Lanczos support:
- //
- template <class T, class Policy, class Lanczos>
- T lgamma_imp(T z, const Policy& pol, const Lanczos& l, int* sign = 0)
- {
- #ifdef BOOST_MATH_INSTRUMENT
- static bool b = false;
- if(!b)
- {
- std::cout << "lgamma_imp called with " << typeid(z).name() << " " << typeid(l).name() << std::endl;
- b = true;
- }
- #endif
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::lgamma<%1%>(%1%)";
- T result = 0;
- int sresult = 1;
- if(z <= -tools::root_epsilon<T>())
- {
- // reflection formula:
- if(floor(z) == z)
- return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
- T t = sinpx(z);
- z = -z;
- if(t < 0)
- {
- t = -t;
- }
- else
- {
- sresult = -sresult;
- }
- result = log(boost::math::constants::pi<T>()) - lgamma_imp(z, pol, l) - log(t);
- }
- else if (z < tools::root_epsilon<T>())
- {
- if (0 == z)
- return policies::raise_pole_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
- if (fabs(z) < 1 / tools::max_value<T>())
- result = -log(fabs(z));
- else
- result = log(fabs(1 / z - constants::euler<T>()));
- if (z < 0)
- sresult = -1;
- }
- else if(z < 15)
- {
- typedef typename policies::precision<T, Policy>::type precision_type;
- typedef typename mpl::if_<
- mpl::and_<
- mpl::less_equal<precision_type, mpl::int_<64> >,
- mpl::greater<precision_type, mpl::int_<0> >
- >,
- mpl::int_<64>,
- typename mpl::if_<
- mpl::and_<
- mpl::less_equal<precision_type, mpl::int_<113> >,
- mpl::greater<precision_type, mpl::int_<0> >
- >,
- mpl::int_<113>, mpl::int_<0> >::type
- >::type tag_type;
- result = lgamma_small_imp<T>(z, T(z - 1), T(z - 2), tag_type(), pol, l);
- }
- else if((z >= 3) && (z < 100) && (std::numeric_limits<T>::max_exponent >= 1024))
- {
- // taking the log of tgamma reduces the error, no danger of overflow here:
- result = log(gamma_imp(z, pol, l));
- }
- else
- {
- // regular evaluation:
- T zgh = static_cast<T>(z + Lanczos::g() - boost::math::constants::half<T>());
- result = log(zgh) - 1;
- result *= z - 0.5f;
- result += log(Lanczos::lanczos_sum_expG_scaled(z));
- }
- if(sign)
- *sign = sresult;
- return result;
- }
- //
- // Incomplete gamma functions follow:
- //
- template <class T>
- struct upper_incomplete_gamma_fract
- {
- private:
- T z, a;
- int k;
- public:
- typedef std::pair<T,T> result_type;
- upper_incomplete_gamma_fract(T a1, T z1)
- : z(z1-a1+1), a(a1), k(0)
- {
- }
- result_type operator()()
- {
- ++k;
- z += 2;
- return result_type(k * (a - k), z);
- }
- };
- template <class T>
- inline T upper_gamma_fraction(T a, T z, T eps)
- {
- // Multiply result by z^a * e^-z to get the full
- // upper incomplete integral. Divide by tgamma(z)
- // to normalise.
- upper_incomplete_gamma_fract<T> f(a, z);
- return 1 / (z - a + 1 + boost::math::tools::continued_fraction_a(f, eps));
- }
- template <class T>
- struct lower_incomplete_gamma_series
- {
- private:
- T a, z, result;
- public:
- typedef T result_type;
- lower_incomplete_gamma_series(T a1, T z1) : a(a1), z(z1), result(1){}
- T operator()()
- {
- T r = result;
- a += 1;
- result *= z/a;
- return r;
- }
- };
- template <class T, class Policy>
- inline T lower_gamma_series(T a, T z, const Policy& pol, T init_value = 0)
- {
- // Multiply result by ((z^a) * (e^-z) / a) to get the full
- // lower incomplete integral. Then divide by tgamma(a)
- // to get the normalised value.
- lower_incomplete_gamma_series<T> s(a, z);
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
- T factor = policies::get_epsilon<T, Policy>();
- T result = boost::math::tools::sum_series(s, factor, max_iter, init_value);
- policies::check_series_iterations<T>("boost::math::detail::lower_gamma_series<%1%>(%1%)", max_iter, pol);
- return result;
- }
- //
- // Fully generic tgamma and lgamma use Stirling's approximation
- // with Bernoulli numbers.
- //
- template<class T>
- std::size_t highest_bernoulli_index()
- {
- const float digits10_of_type = (std::numeric_limits<T>::is_specialized
- ? static_cast<float>(std::numeric_limits<T>::digits10)
- : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
- // Find the high index n for Bn to produce the desired precision in Stirling's calculation.
- return static_cast<std::size_t>(18.0F + (0.6F * digits10_of_type));
- }
- template<class T>
- T minimum_argument_for_bernoulli_recursion()
- {
- const float digits10_of_type = (std::numeric_limits<T>::is_specialized
- ? static_cast<float>(std::numeric_limits<T>::digits10)
- : static_cast<float>(boost::math::tools::digits<T>() * 0.301F));
- return T(digits10_of_type * 1.7F);
- }
- // Forward declaration of the lgamma_imp template specialization.
- template <class T, class Policy>
- T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign = 0);
- template <class T, class Policy>
- T gamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&)
- {
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::tgamma<%1%>(%1%)";
- // Check if the argument of tgamma is identically zero.
- const bool is_at_zero = (z == 0);
- if((is_at_zero) || ((boost::math::isinf)(z) && (z < 0)))
- return policies::raise_domain_error<T>(function, "Evaluation of tgamma at %1%.", z, pol);
- const bool b_neg = (z < 0);
- const bool floor_of_z_is_equal_to_z = (floor(z) == z);
- // Special case handling of small factorials:
- if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
- {
- return boost::math::unchecked_factorial<T>(itrunc(z) - 1);
- }
- // Make a local, unsigned copy of the input argument.
- T zz((!b_neg) ? z : -z);
- // Special case for ultra-small z:
- if(zz < tools::cbrt_epsilon<T>())
- {
- const T a0(1);
- const T a1(boost::math::constants::euler<T>());
- const T six_euler_squared((boost::math::constants::euler<T>() * boost::math::constants::euler<T>()) * 6);
- const T a2((six_euler_squared - boost::math::constants::pi_sqr<T>()) / 12);
- const T inverse_tgamma_series = z * ((a2 * z + a1) * z + a0);
- return 1 / inverse_tgamma_series;
- }
- // Scale the argument up for the calculation of lgamma,
- // and use downward recursion later for the final result.
- const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
- int n_recur;
- if(zz < min_arg_for_recursion)
- {
- n_recur = boost::math::itrunc(min_arg_for_recursion - zz) + 1;
- zz += n_recur;
- }
- else
- {
- n_recur = 0;
- }
- const T log_gamma_value = lgamma_imp(zz, pol, lanczos::undefined_lanczos());
- if(log_gamma_value > tools::log_max_value<T>())
- return policies::raise_overflow_error<T>(function, 0, pol);
- T gamma_value = exp(log_gamma_value);
- // Rescale the result using downward recursion if necessary.
- if(n_recur)
- {
- // The order of divides is important, if we keep subtracting 1 from zz
- // we DO NOT get back to z (cancellation error). Further if z < epsilon
- // we would end up dividing by zero. Also in order to prevent spurious
- // overflow with the first division, we must save dividing by |z| till last,
- // so the optimal order of divides is z+1, z+2, z+3...z+n_recur-1,z.
- zz = fabs(z) + 1;
- for(int k = 1; k < n_recur; ++k)
- {
- gamma_value /= zz;
- zz += 1;
- }
- gamma_value /= fabs(z);
- }
- // Return the result, accounting for possible negative arguments.
- if(b_neg)
- {
- // Provide special error analysis for:
- // * arguments in the neighborhood of a negative integer
- // * arguments exactly equal to a negative integer.
- // Check if the argument of tgamma is exactly equal to a negative integer.
- if(floor_of_z_is_equal_to_z)
- return policies::raise_pole_error<T>(function, "Evaluation of tgamma at a negative integer %1%.", z, pol);
- gamma_value *= sinpx(z);
- BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
- const bool result_is_too_large_to_represent = ( (abs(gamma_value) < 1)
- && ((tools::max_value<T>() * abs(gamma_value)) < boost::math::constants::pi<T>()));
- if(result_is_too_large_to_represent)
- return policies::raise_overflow_error<T>(function, "Result of tgamma is too large to represent.", pol);
- gamma_value = -boost::math::constants::pi<T>() / gamma_value;
- BOOST_MATH_INSTRUMENT_VARIABLE(gamma_value);
- if(gamma_value == 0)
- return policies::raise_underflow_error<T>(function, "Result of tgamma is too small to represent.", pol);
- if((boost::math::fpclassify)(gamma_value) == static_cast<int>(FP_SUBNORMAL))
- return policies::raise_denorm_error<T>(function, "Result of tgamma is denormalized.", gamma_value, pol);
- }
- return gamma_value;
- }
- template <class T, class Policy>
- inline T log_gamma_near_1(const T& z, Policy const& pol)
- {
- //
- // This is for the multiprecision case where there is
- // no lanczos support...
- //
- BOOST_MATH_STD_USING // ADL of std names
- BOOST_ASSERT(fabs(z) < 1);
- T result = -constants::euler<T>() * z;
- T power_term = z * z;
- T term;
- unsigned j = 0;
- do
- {
- term = boost::math::zeta<T>(j + 2, pol) * power_term / (j + 2);
- if(j & 1)
- result -= term;
- else
- result += term;
- power_term *= z;
- ++j;
- } while(fabs(result) * tools::epsilon<T>() < fabs(term));
- return result;
- }
- template <class T, class Policy>
- T lgamma_imp(T z, const Policy& pol, const lanczos::undefined_lanczos&, int* sign)
- {
- BOOST_MATH_STD_USING
- static const char* function = "boost::math::lgamma<%1%>(%1%)";
- // Check if the argument of lgamma is identically zero.
- const bool is_at_zero = (z == 0);
- if(is_at_zero)
- return policies::raise_domain_error<T>(function, "Evaluation of lgamma at zero %1%.", z, pol);
- if((boost::math::isnan)(z))
- return policies::raise_domain_error<T>(function, "Evaluation of lgamma at %1%.", z, pol);
- if((boost::math::isinf)(z))
- return policies::raise_overflow_error<T>(function, 0, pol);
- const bool b_neg = (z < 0);
- const bool floor_of_z_is_equal_to_z = (floor(z) == z);
- // Special case handling of small factorials:
- if((!b_neg) && floor_of_z_is_equal_to_z && (z < boost::math::max_factorial<T>::value))
- {
- return log(boost::math::unchecked_factorial<T>(itrunc(z) - 1));
- }
- // Make a local, unsigned copy of the input argument.
- T zz((!b_neg) ? z : -z);
- const T min_arg_for_recursion = minimum_argument_for_bernoulli_recursion<T>();
- T log_gamma_value;
- if (zz < min_arg_for_recursion)
- {
- // Here we simply take the logarithm of tgamma(). This is somewhat
- // inefficient, but simple. The rationale is that the argument here
- // is relatively small and overflow is not expected to be likely.
- if(fabs(z - 1) < 0.25)
- {
- return log_gamma_near_1(T(zz - 1), pol);
- }
- else if(fabs(z - 2) < 0.25)
- {
- return log_gamma_near_1(T(zz - 2), pol) + log(zz - 1);
- }
- else if (z > -tools::root_epsilon<T>())
- {
- // Reflection formula may fail if z is very close to zero, let the series
- // expansion for tgamma close to zero do the work:
- log_gamma_value = log(abs(gamma_imp(z, pol, lanczos::undefined_lanczos())));
- if (sign)
- {
- *sign = z < 0 ? -1 : 1;
- }
- return log_gamma_value;
- }
- else
- {
- // No issue with spurious overflow in reflection formula,
- // just fall through to regular code:
- log_gamma_value = log(abs(gamma_imp(zz, pol, lanczos::undefined_lanczos())));
- }
- }
- else
- {
- // Perform the Bernoulli series expansion of Stirling's approximation.
- const std::size_t number_of_bernoullis_b2n = highest_bernoulli_index<T>();
- T one_over_x_pow_two_n_minus_one = 1 / zz;
- const T one_over_x2 = one_over_x_pow_two_n_minus_one * one_over_x_pow_two_n_minus_one;
- T sum = (boost::math::bernoulli_b2n<T>(1) / 2) * one_over_x_pow_two_n_minus_one;
- const T target_epsilon_to_break_loop = (sum * boost::math::tools::epsilon<T>()) * T(1.0E-10F);
- for(std::size_t n = 2U; n < number_of_bernoullis_b2n; ++n)
- {
- one_over_x_pow_two_n_minus_one *= one_over_x2;
- const std::size_t n2 = static_cast<std::size_t>(n * 2U);
- const T term = (boost::math::bernoulli_b2n<T>(static_cast<int>(n)) * one_over_x_pow_two_n_minus_one) / (n2 * (n2 - 1U));
- if((n >= 8U) && (abs(term) < target_epsilon_to_break_loop))
- {
- // We have reached the desired precision in Stirling's expansion.
- // Adding additional terms to the sum of this divergent asymptotic
- // expansion will not improve the result.
- // Break from the loop.
- break;
- }
- sum += term;
- }
- // Complete Stirling's approximation.
- const T half_ln_two_pi = log(boost::math::constants::two_pi<T>()) / 2;
- log_gamma_value = ((((zz - boost::math::constants::half<T>()) * log(zz)) - zz) + half_ln_two_pi) + sum;
- }
- int sign_of_result = 1;
- if(b_neg)
- {
- // Provide special error analysis if the argument is exactly
- // equal to a negative integer.
- // Check if the argument of lgamma is exactly equal to a negative integer.
- if(floor_of_z_is_equal_to_z)
- return policies::raise_pole_error<T>(function, "Evaluation of lgamma at a negative integer %1%.", z, pol);
- T t = sinpx(z);
- if(t < 0)
- {
- t = -t;
- }
- else
- {
- sign_of_result = -sign_of_result;
- }
- log_gamma_value = - log_gamma_value
- + log(boost::math::constants::pi<T>())
- - log(t);
- }
- if(sign != static_cast<int*>(0U)) { *sign = sign_of_result; }
- return log_gamma_value;
- }
- //
- // This helper calculates tgamma(dz+1)-1 without cancellation errors,
- // used by the upper incomplete gamma with z < 1:
- //
- template <class T, class Policy, class Lanczos>
- T tgammap1m1_imp(T dz, Policy const& pol, const Lanczos& l)
- {
- BOOST_MATH_STD_USING
- typedef typename policies::precision<T,Policy>::type precision_type;
- typedef typename mpl::if_<
- mpl::or_<
- mpl::less_equal<precision_type, mpl::int_<0> >,
- mpl::greater<precision_type, mpl::int_<113> >
- >,
- typename mpl::if_<
- mpl::and_<is_same<Lanczos, lanczos::lanczos24m113>, mpl::greater<precision_type, mpl::int_<0> > >,
- mpl::int_<113>,
- mpl::int_<0>
- >::type,
- typename mpl::if_<
- mpl::less_equal<precision_type, mpl::int_<64> >,
- mpl::int_<64>, mpl::int_<113> >::type
- >::type tag_type;
- T result;
- if(dz < 0)
- {
- if(dz < -0.5)
- {
- // Best method is simply to subtract 1 from tgamma:
- result = boost::math::tgamma(1+dz, pol) - 1;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else
- {
- // Use expm1 on lgamma:
- result = boost::math::expm1(-boost::math::log1p(dz, pol)
- + lgamma_small_imp<T>(dz+2, dz + 1, dz, tag_type(), pol, l));
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- }
- else
- {
- if(dz < 2)
- {
- // Use expm1 on lgamma:
- result = boost::math::expm1(lgamma_small_imp<T>(dz+1, dz, dz-1, tag_type(), pol, l), pol);
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- else
- {
- // Best method is simply to subtract 1 from tgamma:
- result = boost::math::tgamma(1+dz, pol) - 1;
- BOOST_MATH_INSTRUMENT_CODE(result);
- }
- }
- return result;
- }
- template <class T, class Policy>
- inline T tgammap1m1_imp(T z, Policy const& pol,
- const ::boost::math::lanczos::undefined_lanczos&)
- {
- BOOST_MATH_STD_USING // ADL of std names
- if(fabs(z) < 0.55)
- {
- return boost::math::expm1(log_gamma_near_1(z, pol));
- }
- return boost::math::expm1(boost::math::lgamma(1 + z, pol));
- }
- //
- // Series representation for upper fraction when z is small:
- //
- template <class T>
- struct small_gamma2_series
- {
- typedef T result_type;
- small_gamma2_series(T a_, T x_) : result(-x_), x(-x_), apn(a_+1), n(1){}
- T operator()()
- {
- T r = result / (apn);
- result *= x;
- result /= ++n;
- apn += 1;
- return r;
- }
- private:
- T result, x, apn;
- int n;
- };
- //
- // calculate power term prefix (z^a)(e^-z) used in the non-normalised
- // incomplete gammas:
- //
- template <class T, class Policy>
- T full_igamma_prefix(T a, T z, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- T prefix;
- T alz = a * log(z);
- if(z >= 1)
- {
- if((alz < tools::log_max_value<T>()) && (-z > tools::log_min_value<T>()))
- {
- prefix = pow(z, a) * exp(-z);
- }
- else if(a >= 1)
- {
- prefix = pow(z / exp(z/a), a);
- }
- else
- {
- prefix = exp(alz - z);
- }
- }
- else
- {
- if(alz > tools::log_min_value<T>())
- {
- prefix = pow(z, a) * exp(-z);
- }
- else if(z/a < tools::log_max_value<T>())
- {
- prefix = pow(z / exp(z/a), a);
- }
- else
- {
- prefix = exp(alz - z);
- }
- }
- //
- // This error handling isn't very good: it happens after the fact
- // rather than before it...
- //
- if((boost::math::fpclassify)(prefix) == (int)FP_INFINITE)
- return policies::raise_overflow_error<T>("boost::math::detail::full_igamma_prefix<%1%>(%1%, %1%)", "Result of incomplete gamma function is too large to represent.", pol);
- return prefix;
- }
- //
- // Compute (z^a)(e^-z)/tgamma(a)
- // most if the error occurs in this function:
- //
- template <class T, class Policy, class Lanczos>
- T regularised_gamma_prefix(T a, T z, const Policy& pol, const Lanczos& l)
- {
- BOOST_MATH_STD_USING
- T agh = a + static_cast<T>(Lanczos::g()) - T(0.5);
- T prefix;
- T d = ((z - a) - static_cast<T>(Lanczos::g()) + T(0.5)) / agh;
- if(a < 1)
- {
- //
- // We have to treat a < 1 as a special case because our Lanczos
- // approximations are optimised against the factorials with a > 1,
- // and for high precision types especially (128-bit reals for example)
- // very small values of a can give rather eroneous results for gamma
- // unless we do this:
- //
- // TODO: is this still required? Lanczos approx should be better now?
- //
- if(z <= tools::log_min_value<T>())
- {
- // Oh dear, have to use logs, should be free of cancellation errors though:
- return exp(a * log(z) - z - lgamma_imp(a, pol, l));
- }
- else
- {
- // direct calculation, no danger of overflow as gamma(a) < 1/a
- // for small a.
- return pow(z, a) * exp(-z) / gamma_imp(a, pol, l);
- }
- }
- else if((fabs(d*d*a) <= 100) && (a > 150))
- {
- // special case for large a and a ~ z.
- prefix = a * boost::math::log1pmx(d, pol) + z * static_cast<T>(0.5 - Lanczos::g()) / agh;
- prefix = exp(prefix);
- }
- else
- {
- //
- // general case.
- // direct computation is most accurate, but use various fallbacks
- // for different parts of the problem domain:
- //
- T alz = a * log(z / agh);
- T amz = a - z;
- if(((std::min)(alz, amz) <= tools::log_min_value<T>()) || ((std::max)(alz, amz) >= tools::log_max_value<T>()))
- {
- T amza = amz / a;
- if(((std::min)(alz, amz)/2 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/2 < tools::log_max_value<T>()))
- {
- // compute square root of the result and then square it:
- T sq = pow(z / agh, a / 2) * exp(amz / 2);
- prefix = sq * sq;
- }
- else if(((std::min)(alz, amz)/4 > tools::log_min_value<T>()) && ((std::max)(alz, amz)/4 < tools::log_max_value<T>()) && (z > a))
- {
- // compute the 4th root of the result then square it twice:
- T sq = pow(z / agh, a / 4) * exp(amz / 4);
- prefix = sq * sq;
- prefix *= prefix;
- }
- else if((amza > tools::log_min_value<T>()) && (amza < tools::log_max_value<T>()))
- {
- prefix = pow((z * exp(amza)) / agh, a);
- }
- else
- {
- prefix = exp(alz + amz);
- }
- }
- else
- {
- prefix = pow(z / agh, a) * exp(amz);
- }
- }
- prefix *= sqrt(agh / boost::math::constants::e<T>()) / Lanczos::lanczos_sum_expG_scaled(a);
- return prefix;
- }
- //
- // And again, without Lanczos support:
- //
- template <class T, class Policy>
- T regularised_gamma_prefix(T a, T z, const Policy& pol, const lanczos::undefined_lanczos&)
- {
- BOOST_MATH_STD_USING
- T limit = (std::max)(T(10), a);
- T sum = detail::lower_gamma_series(a, limit, pol) / a;
- sum += detail::upper_gamma_fraction(a, limit, ::boost::math::policies::get_epsilon<T, Policy>());
- if(a < 10)
- {
- // special case for small a:
- T prefix = pow(z / 10, a);
- prefix *= exp(10-z);
- if(0 == prefix)
- {
- prefix = pow((z * exp((10-z)/a)) / 10, a);
- }
- prefix /= sum;
- return prefix;
- }
- T zoa = z / a;
- T amz = a - z;
- T alzoa = a * log(zoa);
- T prefix;
- if(((std::min)(alzoa, amz) <= tools::log_min_value<T>()) || ((std::max)(alzoa, amz) >= tools::log_max_value<T>()))
- {
- T amza = amz / a;
- if((amza <= tools::log_min_value<T>()) || (amza >= tools::log_max_value<T>()))
- {
- prefix = exp(alzoa + amz);
- }
- else
- {
- prefix = pow(zoa * exp(amza), a);
- }
- }
- else
- {
- prefix = pow(zoa, a) * exp(amz);
- }
- prefix /= sum;
- return prefix;
- }
- //
- // Upper gamma fraction for very small a:
- //
- template <class T, class Policy>
- inline T tgamma_small_upper_part(T a, T x, const Policy& pol, T* pgam = 0, bool invert = false, T* pderivative = 0)
- {
- BOOST_MATH_STD_USING // ADL of std functions.
- //
- // Compute the full upper fraction (Q) when a is very small:
- //
- T result;
- result = boost::math::tgamma1pm1(a, pol);
- if(pgam)
- *pgam = (result + 1) / a;
- T p = boost::math::powm1(x, a, pol);
- result -= p;
- result /= a;
- detail::small_gamma2_series<T> s(a, x);
- boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>() - 10;
- p += 1;
- if(pderivative)
- *pderivative = p / (*pgam * exp(x));
- T init_value = invert ? *pgam : 0;
- result = -p * tools::sum_series(s, boost::math::policies::get_epsilon<T, Policy>(), max_iter, (init_value - result) / p);
- policies::check_series_iterations<T>("boost::math::tgamma_small_upper_part<%1%>(%1%, %1%)", max_iter, pol);
- if(invert)
- result = -result;
- return result;
- }
- //
- // Upper gamma fraction for integer a:
- //
- template <class T, class Policy>
- inline T finite_gamma_q(T a, T x, Policy const& pol, T* pderivative = 0)
- {
- //
- // Calculates normalised Q when a is an integer:
- //
- BOOST_MATH_STD_USING
- T e = exp(-x);
- T sum = e;
- if(sum != 0)
- {
- T term = sum;
- for(unsigned n = 1; n < a; ++n)
- {
- term /= n;
- term *= x;
- sum += term;
- }
- }
- if(pderivative)
- {
- *pderivative = e * pow(x, a) / boost::math::unchecked_factorial<T>(itrunc(T(a - 1), pol));
- }
- return sum;
- }
- //
- // Upper gamma fraction for half integer a:
- //
- template <class T, class Policy>
- T finite_half_gamma_q(T a, T x, T* p_derivative, const Policy& pol)
- {
- //
- // Calculates normalised Q when a is a half-integer:
- //
- BOOST_MATH_STD_USING
- T e = boost::math::erfc(sqrt(x), pol);
- if((e != 0) && (a > 1))
- {
- T term = exp(-x) / sqrt(constants::pi<T>() * x);
- term *= x;
- static const T half = T(1) / 2;
- term /= half;
- T sum = term;
- for(unsigned n = 2; n < a; ++n)
- {
- term /= n - half;
- term *= x;
- sum += term;
- }
- e += sum;
- if(p_derivative)
- {
- *p_derivative = 0;
- }
- }
- else if(p_derivative)
- {
- // We'll be dividing by x later, so calculate derivative * x:
- *p_derivative = sqrt(x) * exp(-x) / constants::root_pi<T>();
- }
- return e;
- }
- //
- // Main incomplete gamma entry point, handles all four incomplete gamma's:
- //
- template <class T, class Policy>
- T gamma_incomplete_imp(T a, T x, bool normalised, bool invert,
- const Policy& pol, T* p_derivative)
- {
- static const char* function = "boost::math::gamma_p<%1%>(%1%, %1%)";
- if(a <= 0)
- return policies::raise_domain_error<T>(function, "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
- if(x < 0)
- return policies::raise_domain_error<T>(function, "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
- BOOST_MATH_STD_USING
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- T result = 0; // Just to avoid warning C4701: potentially uninitialized local variable 'result' used
- if(a >= max_factorial<T>::value && !normalised)
- {
- //
- // When we're computing the non-normalized incomplete gamma
- // and a is large the result is rather hard to compute unless
- // we use logs. There are really two options - if x is a long
- // way from a in value then we can reliably use methods 2 and 4
- // below in logarithmic form and go straight to the result.
- // Otherwise we let the regularized gamma take the strain
- // (the result is unlikely to unerflow in the central region anyway)
- // and combine with lgamma in the hopes that we get a finite result.
- //
- if(invert && (a * 4 < x))
- {
- // This is method 4 below, done in logs:
- result = a * log(x) - x;
- if(p_derivative)
- *p_derivative = exp(result);
- result += log(upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>()));
- }
- else if(!invert && (a > 4 * x))
- {
- // This is method 2 below, done in logs:
- result = a * log(x) - x;
- if(p_derivative)
- *p_derivative = exp(result);
- T init_value = 0;
- result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
- }
- else
- {
- result = gamma_incomplete_imp(a, x, true, invert, pol, p_derivative);
- if(result == 0)
- {
- if(invert)
- {
- // Try http://functions.wolfram.com/06.06.06.0039.01
- result = 1 + 1 / (12 * a) + 1 / (288 * a * a);
- result = log(result) - a + (a - 0.5f) * log(a) + log(boost::math::constants::root_two_pi<T>());
- if(p_derivative)
- *p_derivative = exp(a * log(x) - x);
- }
- else
- {
- // This is method 2 below, done in logs, we're really outside the
- // range of this method, but since the result is almost certainly
- // infinite, we should probably be OK:
- result = a * log(x) - x;
- if(p_derivative)
- *p_derivative = exp(result);
- T init_value = 0;
- result += log(detail::lower_gamma_series(a, x, pol, init_value) / a);
- }
- }
- else
- {
- result = log(result) + boost::math::lgamma(a, pol);
- }
- }
- if(result > tools::log_max_value<T>())
- return policies::raise_overflow_error<T>(function, 0, pol);
- return exp(result);
- }
- BOOST_ASSERT((p_derivative == 0) || (normalised == true));
- bool is_int, is_half_int;
- bool is_small_a = (a < 30) && (a <= x + 1) && (x < tools::log_max_value<T>());
- if(is_small_a)
- {
- T fa = floor(a);
- is_int = (fa == a);
- is_half_int = is_int ? false : (fabs(fa - a) == 0.5f);
- }
- else
- {
- is_int = is_half_int = false;
- }
- int eval_method;
-
- if(is_int && (x > 0.6))
- {
- // calculate Q via finite sum:
- invert = !invert;
- eval_method = 0;
- }
- else if(is_half_int && (x > 0.2))
- {
- // calculate Q via finite sum for half integer a:
- invert = !invert;
- eval_method = 1;
- }
- else if((x < tools::root_epsilon<T>()) && (a > 1))
- {
- eval_method = 6;
- }
- else if(x < 0.5)
- {
- //
- // Changeover criterion chosen to give a changeover at Q ~ 0.33
- //
- if(-0.4 / log(x) < a)
- {
- eval_method = 2;
- }
- else
- {
- eval_method = 3;
- }
- }
- else if(x < 1.1)
- {
- //
- // Changover here occurs when P ~ 0.75 or Q ~ 0.25:
- //
- if(x * 0.75f < a)
- {
- eval_method = 2;
- }
- else
- {
- eval_method = 3;
- }
- }
- else
- {
- //
- // Begin by testing whether we're in the "bad" zone
- // where the result will be near 0.5 and the usual
- // series and continued fractions are slow to converge:
- //
- bool use_temme = false;
- if(normalised && std::numeric_limits<T>::is_specialized && (a > 20))
- {
- T sigma = fabs((x-a)/a);
- if((a > 200) && (policies::digits<T, Policy>() <= 113))
- {
- //
- // This limit is chosen so that we use Temme's expansion
- // only if the result would be larger than about 10^-6.
- // Below that the regular series and continued fractions
- // converge OK, and if we use Temme's method we get increasing
- // errors from the dominant erfc term as it's (inexact) argument
- // increases in magnitude.
- //
- if(20 / a > sigma * sigma)
- use_temme = true;
- }
- else if(policies::digits<T, Policy>() <= 64)
- {
- // Note in this zone we can't use Temme's expansion for
- // types longer than an 80-bit real:
- // it would require too many terms in the polynomials.
- if(sigma < 0.4)
- use_temme = true;
- }
- }
- if(use_temme)
- {
- eval_method = 5;
- }
- else
- {
- //
- // Regular case where the result will not be too close to 0.5.
- //
- // Changeover here occurs at P ~ Q ~ 0.5
- // Note that series computation of P is about x2 faster than continued fraction
- // calculation of Q, so try and use the CF only when really necessary, especially
- // for small x.
- //
- if(x - (1 / (3 * x)) < a)
- {
- eval_method = 2;
- }
- else
- {
- eval_method = 4;
- invert = !invert;
- }
- }
- }
- switch(eval_method)
- {
- case 0:
- {
- result = finite_gamma_q(a, x, pol, p_derivative);
- if(normalised == false)
- result *= boost::math::tgamma(a, pol);
- break;
- }
- case 1:
- {
- result = finite_half_gamma_q(a, x, p_derivative, pol);
- if(normalised == false)
- result *= boost::math::tgamma(a, pol);
- if(p_derivative && (*p_derivative == 0))
- *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
- break;
- }
- case 2:
- {
- // Compute P:
- result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
- if(p_derivative)
- *p_derivative = result;
- if(result != 0)
- {
- //
- // If we're going to be inverting the result then we can
- // reduce the number of series evaluations by quite
- // a few iterations if we set an initial value for the
- // series sum based on what we'll end up subtracting it from
- // at the end.
- // Have to be careful though that this optimization doesn't
- // lead to spurious numberic overflow. Note that the
- // scary/expensive overflow checks below are more often
- // than not bypassed in practice for "sensible" input
- // values:
- //
- T init_value = 0;
- bool optimised_invert = false;
- if(invert)
- {
- init_value = (normalised ? 1 : boost::math::tgamma(a, pol));
- if(normalised || (result >= 1) || (tools::max_value<T>() * result > init_value))
- {
- init_value /= result;
- if(normalised || (a < 1) || (tools::max_value<T>() / a > init_value))
- {
- init_value *= -a;
- optimised_invert = true;
- }
- else
- init_value = 0;
- }
- else
- init_value = 0;
- }
- result *= detail::lower_gamma_series(a, x, pol, init_value) / a;
- if(optimised_invert)
- {
- invert = false;
- result = -result;
- }
- }
- break;
- }
- case 3:
- {
- // Compute Q:
- invert = !invert;
- T g;
- result = tgamma_small_upper_part(a, x, pol, &g, invert, p_derivative);
- invert = false;
- if(normalised)
- result /= g;
- break;
- }
- case 4:
- {
- // Compute Q:
- result = normalised ? regularised_gamma_prefix(a, x, pol, lanczos_type()) : full_igamma_prefix(a, x, pol);
- if(p_derivative)
- *p_derivative = result;
- if(result != 0)
- result *= upper_gamma_fraction(a, x, policies::get_epsilon<T, Policy>());
- break;
- }
- case 5:
- {
- //
- // Use compile time dispatch to the appropriate
- // Temme asymptotic expansion. This may be dead code
- // if T does not have numeric limits support, or has
- // too many digits for the most precise version of
- // these expansions, in that case we'll be calling
- // an empty function.
- //
- typedef typename policies::precision<T, Policy>::type precision_type;
- typedef typename mpl::if_<
- mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
- mpl::greater<precision_type, mpl::int_<113> > >,
- mpl::int_<0>,
- typename mpl::if_<
- mpl::less_equal<precision_type, mpl::int_<53> >,
- mpl::int_<53>,
- typename mpl::if_<
- mpl::less_equal<precision_type, mpl::int_<64> >,
- mpl::int_<64>,
- mpl::int_<113>
- >::type
- >::type
- >::type tag_type;
- result = igamma_temme_large(a, x, pol, static_cast<tag_type const*>(0));
- if(x >= a)
- invert = !invert;
- if(p_derivative)
- *p_derivative = regularised_gamma_prefix(a, x, pol, lanczos_type());
- break;
- }
- case 6:
- {
- // x is so small that P is necessarily very small too,
- // use http://functions.wolfram.com/GammaBetaErf/GammaRegularized/06/01/05/01/01/
- result = !normalised ? pow(x, a) / (a) : pow(x, a) / boost::math::tgamma(a + 1, pol);
- result *= 1 - a * x / (a + 1);
- }
- }
- if(normalised && (result > 1))
- result = 1;
- if(invert)
- {
- T gam = normalised ? 1 : boost::math::tgamma(a, pol);
- result = gam - result;
- }
- if(p_derivative)
- {
- //
- // Need to convert prefix term to derivative:
- //
- if((x < 1) && (tools::max_value<T>() * x < *p_derivative))
- {
- // overflow, just return an arbitrarily large value:
- *p_derivative = tools::max_value<T>() / 2;
- }
- *p_derivative /= x;
- }
- return result;
- }
- //
- // Ratios of two gamma functions:
- //
- template <class T, class Policy, class Lanczos>
- T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const Lanczos& l)
- {
- BOOST_MATH_STD_USING
- if(z < tools::epsilon<T>())
- {
- //
- // We get spurious numeric overflow unless we're very careful, this
- // can occur either inside Lanczos::lanczos_sum(z) or in the
- // final combination of terms, to avoid this, split the product up
- // into 2 (or 3) parts:
- //
- // G(z) / G(L) = 1 / (z * G(L)) ; z < eps, L = z + delta = delta
- // z * G(L) = z * G(lim) * (G(L)/G(lim)) ; lim = largest factorial
- //
- if(boost::math::max_factorial<T>::value < delta)
- {
- T ratio = tgamma_delta_ratio_imp_lanczos(delta, T(boost::math::max_factorial<T>::value - delta), pol, l);
- ratio *= z;
- ratio *= boost::math::unchecked_factorial<T>(boost::math::max_factorial<T>::value - 1);
- return 1 / ratio;
- }
- else
- {
- return 1 / (z * boost::math::tgamma(z + delta, pol));
- }
- }
- T zgh = static_cast<T>(z + Lanczos::g() - constants::half<T>());
- T result;
- if(z + delta == z)
- {
- if(fabs(delta) < 10)
- result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
- else
- result = 1;
- }
- else
- {
- if(fabs(delta) < 10)
- {
- result = exp((constants::half<T>() - z) * boost::math::log1p(delta / zgh, pol));
- }
- else
- {
- result = pow(zgh / (zgh + delta), z - constants::half<T>());
- }
- // Split the calculation up to avoid spurious overflow:
- result *= Lanczos::lanczos_sum(z) / Lanczos::lanczos_sum(T(z + delta));
- }
- result *= pow(constants::e<T>() / (zgh + delta), delta);
- return result;
- }
- //
- // And again without Lanczos support this time:
- //
- template <class T, class Policy>
- T tgamma_delta_ratio_imp_lanczos(T z, T delta, const Policy& pol, const lanczos::undefined_lanczos&)
- {
- BOOST_MATH_STD_USING
- //
- // The upper gamma fraction is *very* slow for z < 6, actually it's very
- // slow to converge everywhere but recursing until z > 6 gets rid of the
- // worst of it's behaviour.
- //
- T prefix = 1;
- T zd = z + delta;
- while((zd < 6) && (z < 6))
- {
- prefix /= z;
- prefix *= zd;
- z += 1;
- zd += 1;
- }
- if(delta < 10)
- {
- prefix *= exp(-z * boost::math::log1p(delta / z, pol));
- }
- else
- {
- prefix *= pow(z / zd, z);
- }
- prefix *= pow(constants::e<T>() / zd, delta);
- T sum = detail::lower_gamma_series(z, z, pol) / z;
- sum += detail::upper_gamma_fraction(z, z, ::boost::math::policies::get_epsilon<T, Policy>());
- T sumd = detail::lower_gamma_series(zd, zd, pol) / zd;
- sumd += detail::upper_gamma_fraction(zd, zd, ::boost::math::policies::get_epsilon<T, Policy>());
- sum /= sumd;
- if(fabs(tools::max_value<T>() / prefix) < fabs(sum))
- return policies::raise_overflow_error<T>("boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)", "Result of tgamma is too large to represent.", pol);
- return sum * prefix;
- }
- template <class T, class Policy>
- T tgamma_delta_ratio_imp(T z, T delta, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if((z <= 0) || (z + delta <= 0))
- {
- // This isn't very sofisticated, or accurate, but it does work:
- return boost::math::tgamma(z, pol) / boost::math::tgamma(z + delta, pol);
- }
- if(floor(delta) == delta)
- {
- if(floor(z) == z)
- {
- //
- // Both z and delta are integers, see if we can just use table lookup
- // of the factorials to get the result:
- //
- if((z <= max_factorial<T>::value) && (z + delta <= max_factorial<T>::value))
- {
- return unchecked_factorial<T>((unsigned)itrunc(z, pol) - 1) / unchecked_factorial<T>((unsigned)itrunc(T(z + delta), pol) - 1);
- }
- }
- if(fabs(delta) < 20)
- {
- //
- // delta is a small integer, we can use a finite product:
- //
- if(delta == 0)
- return 1;
- if(delta < 0)
- {
- z -= 1;
- T result = z;
- while(0 != (delta += 1))
- {
- z -= 1;
- result *= z;
- }
- return result;
- }
- else
- {
- T result = 1 / z;
- while(0 != (delta -= 1))
- {
- z += 1;
- result /= z;
- }
- return result;
- }
- }
- }
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- return tgamma_delta_ratio_imp_lanczos(z, delta, pol, lanczos_type());
- }
- template <class T, class Policy>
- T tgamma_ratio_imp(T x, T y, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- if((x <= 0) || (boost::math::isinf)(x))
- return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got a=%1%).", x, pol);
- if((y <= 0) || (boost::math::isinf)(y))
- return policies::raise_domain_error<T>("boost::math::tgamma_ratio<%1%>(%1%, %1%)", "Gamma function ratios only implemented for positive arguments (got b=%1%).", y, pol);
- if(x <= tools::min_value<T>())
- {
- // Special case for denorms...Ugh.
- T shift = ldexp(T(1), tools::digits<T>());
- return shift * tgamma_ratio_imp(T(x * shift), y, pol);
- }
- if((x < max_factorial<T>::value) && (y < max_factorial<T>::value))
- {
- // Rather than subtracting values, lets just call the gamma functions directly:
- return boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
- }
- T prefix = 1;
- if(x < 1)
- {
- if(y < 2 * max_factorial<T>::value)
- {
- // We need to sidestep on x as well, otherwise we'll underflow
- // before we get to factor in the prefix term:
- prefix /= x;
- x += 1;
- while(y >= max_factorial<T>::value)
- {
- y -= 1;
- prefix /= y;
- }
- return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
- }
- //
- // result is almost certainly going to underflow to zero, try logs just in case:
- //
- return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
- }
- if(y < 1)
- {
- if(x < 2 * max_factorial<T>::value)
- {
- // We need to sidestep on y as well, otherwise we'll overflow
- // before we get to factor in the prefix term:
- prefix *= y;
- y += 1;
- while(x >= max_factorial<T>::value)
- {
- x -= 1;
- prefix *= x;
- }
- return prefix * boost::math::tgamma(x, pol) / boost::math::tgamma(y, pol);
- }
- //
- // Result will almost certainly overflow, try logs just in case:
- //
- return exp(boost::math::lgamma(x, pol) - boost::math::lgamma(y, pol));
- }
- //
- // Regular case, x and y both large and similar in magnitude:
- //
- return boost::math::tgamma_delta_ratio(x, y - x, pol);
- }
- template <class T, class Policy>
- T gamma_p_derivative_imp(T a, T x, const Policy& pol)
- {
- BOOST_MATH_STD_USING
- //
- // Usual error checks first:
- //
- if(a <= 0)
- return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument a to the incomplete gamma function must be greater than zero (got a=%1%).", a, pol);
- if(x < 0)
- return policies::raise_domain_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", "Argument x to the incomplete gamma function must be >= 0 (got x=%1%).", x, pol);
- //
- // Now special cases:
- //
- if(x == 0)
- {
- return (a > 1) ? 0 :
- (a == 1) ? 1 : policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
- }
- //
- // Normal case:
- //
- typedef typename lanczos::lanczos<T, Policy>::type lanczos_type;
- T f1 = detail::regularised_gamma_prefix(a, x, pol, lanczos_type());
- if((x < 1) && (tools::max_value<T>() * x < f1))
- {
- // overflow:
- return policies::raise_overflow_error<T>("boost::math::gamma_p_derivative<%1%>(%1%, %1%)", 0, pol);
- }
- if(f1 == 0)
- {
- // Underflow in calculation, use logs instead:
- f1 = a * log(x) - x - lgamma(a, pol) - log(x);
- f1 = exp(f1);
- }
- else
- f1 /= x;
- return f1;
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- tgamma(T z, const Policy& /* pol */, const mpl::true_)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma<%1%>(%1%)");
- }
- template <class T, class Policy>
- struct igamma_initializer
- {
- struct init
- {
- init()
- {
- typedef typename policies::precision<T, Policy>::type precision_type;
- typedef typename mpl::if_<
- mpl::or_<mpl::equal_to<precision_type, mpl::int_<0> >,
- mpl::greater<precision_type, mpl::int_<113> > >,
- mpl::int_<0>,
- typename mpl::if_<
- mpl::less_equal<precision_type, mpl::int_<53> >,
- mpl::int_<53>,
- typename mpl::if_<
- mpl::less_equal<precision_type, mpl::int_<64> >,
- mpl::int_<64>,
- mpl::int_<113>
- >::type
- >::type
- >::type tag_type;
- do_init(tag_type());
- }
- template <int N>
- static void do_init(const mpl::int_<N>&)
- {
- // If std::numeric_limits<T>::digits is zero, we must not call
- // our inituialization code here as the precision presumably
- // varies at runtime, and will not have been set yet. Plus the
- // code requiring initialization isn't called when digits == 0.
- if(std::numeric_limits<T>::digits)
- {
- boost::math::gamma_p(static_cast<T>(400), static_cast<T>(400), Policy());
- }
- }
- static void do_init(const mpl::int_<53>&){}
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T, class Policy>
- const typename igamma_initializer<T, Policy>::init igamma_initializer<T, Policy>::initializer;
- template <class T, class Policy>
- struct lgamma_initializer
- {
- struct init
- {
- init()
- {
- typedef typename policies::precision<T, Policy>::type precision_type;
- typedef typename mpl::if_<
- mpl::and_<
- mpl::less_equal<precision_type, mpl::int_<64> >,
- mpl::greater<precision_type, mpl::int_<0> >
- >,
- mpl::int_<64>,
- typename mpl::if_<
- mpl::and_<
- mpl::less_equal<precision_type, mpl::int_<113> >,
- mpl::greater<precision_type, mpl::int_<0> >
- >,
- mpl::int_<113>, mpl::int_<0> >::type
- >::type tag_type;
- do_init(tag_type());
- }
- static void do_init(const mpl::int_<64>&)
- {
- boost::math::lgamma(static_cast<T>(2.5), Policy());
- boost::math::lgamma(static_cast<T>(1.25), Policy());
- boost::math::lgamma(static_cast<T>(1.75), Policy());
- }
- static void do_init(const mpl::int_<113>&)
- {
- boost::math::lgamma(static_cast<T>(2.5), Policy());
- boost::math::lgamma(static_cast<T>(1.25), Policy());
- boost::math::lgamma(static_cast<T>(1.5), Policy());
- boost::math::lgamma(static_cast<T>(1.75), Policy());
- }
- static void do_init(const mpl::int_<0>&)
- {
- }
- void force_instantiate()const{}
- };
- static const init initializer;
- static void force_instantiate()
- {
- initializer.force_instantiate();
- }
- };
- template <class T, class Policy>
- const typename lgamma_initializer<T, Policy>::init lgamma_initializer<T, Policy>::initializer;
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- tgamma(T1 a, T2 z, const Policy&, const mpl::false_)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- igamma_initializer<value_type, forwarding_policy>::force_instantiate();
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::gamma_incomplete_imp(static_cast<value_type>(a),
- static_cast<value_type>(z), false, true,
- forwarding_policy(), static_cast<value_type*>(0)), "boost::math::tgamma<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- tgamma(T1 a, T2 z, const mpl::false_ tag)
- {
- return tgamma(a, z, policies::policy<>(), tag);
- }
- } // namespace detail
- template <class T>
- inline typename tools::promote_args<T>::type
- tgamma(T z)
- {
- return tgamma(z, policies::policy<>());
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- lgamma(T z, int* sign, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- detail::lgamma_initializer<value_type, forwarding_policy>::force_instantiate();
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::lgamma_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type(), sign), "boost::math::lgamma<%1%>(%1%)");
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- lgamma(T z, int* sign)
- {
- return lgamma(z, sign, policies::policy<>());
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- lgamma(T x, const Policy& pol)
- {
- return ::boost::math::lgamma(x, 0, pol);
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- lgamma(T x)
- {
- return ::boost::math::lgamma(x, 0, policies::policy<>());
- }
- template <class T, class Policy>
- inline typename tools::promote_args<T>::type
- tgamma1pm1(T z, const Policy& /* pol */)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<typename remove_cv<result_type>::type, forwarding_policy>(detail::tgammap1m1_imp(static_cast<value_type>(z), forwarding_policy(), evaluation_type()), "boost::math::tgamma1pm1<%!%>(%1%)");
- }
- template <class T>
- inline typename tools::promote_args<T>::type
- tgamma1pm1(T z)
- {
- return tgamma1pm1(z, policies::policy<>());
- }
- //
- // Full upper incomplete gamma:
- //
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- tgamma(T1 a, T2 z)
- {
- //
- // Type T2 could be a policy object, or a value, select the
- // right overload based on T2:
- //
- typedef typename policies::is_policy<T2>::type maybe_policy;
- return detail::tgamma(a, z, maybe_policy());
- }
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- tgamma(T1 a, T2 z, const Policy& pol)
- {
- return detail::tgamma(a, z, pol, mpl::false_());
- }
- //
- // Full lower incomplete gamma:
- //
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_lower(T1 a, T2 z, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::gamma_incomplete_imp(static_cast<value_type>(a),
- static_cast<value_type>(z), false, false,
- forwarding_policy(), static_cast<value_type*>(0)), "tgamma_lower<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_lower(T1 a, T2 z)
- {
- return tgamma_lower(a, z, policies::policy<>());
- }
- //
- // Regularised upper incomplete gamma:
- //
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- gamma_q(T1 a, T2 z, const Policy& /* pol */)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::gamma_incomplete_imp(static_cast<value_type>(a),
- static_cast<value_type>(z), true, true,
- forwarding_policy(), static_cast<value_type*>(0)), "gamma_q<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- gamma_q(T1 a, T2 z)
- {
- return gamma_q(a, z, policies::policy<>());
- }
- //
- // Regularised lower incomplete gamma:
- //
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- gamma_p(T1 a, T2 z, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- // typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- detail::igamma_initializer<value_type, forwarding_policy>::force_instantiate();
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(
- detail::gamma_incomplete_imp(static_cast<value_type>(a),
- static_cast<value_type>(z), true, false,
- forwarding_policy(), static_cast<value_type*>(0)), "gamma_p<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- gamma_p(T1 a, T2 z)
- {
- return gamma_p(a, z, policies::policy<>());
- }
- // ratios of gamma functions:
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_delta_ratio(T1 z, T2 delta, const Policy& /* pol */)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_delta_ratio_imp(static_cast<value_type>(z), static_cast<value_type>(delta), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_delta_ratio(T1 z, T2 delta)
- {
- return tgamma_delta_ratio(z, delta, policies::policy<>());
- }
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_ratio(T1 a, T2 b, const Policy&)
- {
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::tgamma_ratio_imp(static_cast<value_type>(a), static_cast<value_type>(b), forwarding_policy()), "boost::math::tgamma_delta_ratio<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- tgamma_ratio(T1 a, T2 b)
- {
- return tgamma_ratio(a, b, policies::policy<>());
- }
- template <class T1, class T2, class Policy>
- inline typename tools::promote_args<T1, T2>::type
- gamma_p_derivative(T1 a, T2 x, const Policy&)
- {
- BOOST_FPU_EXCEPTION_GUARD
- typedef typename tools::promote_args<T1, T2>::type result_type;
- typedef typename policies::evaluation<result_type, Policy>::type value_type;
- typedef typename policies::normalise<
- Policy,
- policies::promote_float<false>,
- policies::promote_double<false>,
- policies::discrete_quantile<>,
- policies::assert_undefined<> >::type forwarding_policy;
- return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::gamma_p_derivative_imp(static_cast<value_type>(a), static_cast<value_type>(x), forwarding_policy()), "boost::math::gamma_p_derivative<%1%>(%1%, %1%)");
- }
- template <class T1, class T2>
- inline typename tools::promote_args<T1, T2>::type
- gamma_p_derivative(T1 a, T2 x)
- {
- return gamma_p_derivative(a, x, policies::policy<>());
- }
- } // namespace math
- } // namespace boost
- #ifdef BOOST_MSVC
- # pragma warning(pop)
- #endif
- #include <boost/math/special_functions/detail/igamma_inverse.hpp>
- #include <boost/math/special_functions/detail/gamma_inva.hpp>
- #include <boost/math/special_functions/erf.hpp>
- #endif // BOOST_MATH_SF_GAMMA_HPP
|