| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- /* boost random/generalized_inverse_gaussian_distribution.hpp header file
- *
- * Copyright Young Geun Kim 2025
- * Distributed under the Boost Software License, Version 1.0. (See
- * accompanying file LICENSE_1_0.txt or copy at
- * http://www.boost.org/LICENSE_1_0.txt)
- *
- * See http://www.boost.org for most recent version including documentation.
- *
- * $Id$
- */
- #ifndef BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP
- #define BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP
- #include <boost/config/no_tr1/cmath.hpp>
- #include <istream>
- #include <iosfwd>
- #include <limits>
- #include <boost/assert.hpp>
- #include <boost/limits.hpp>
- #include <boost/random/detail/config.hpp>
- #include <boost/random/detail/operators.hpp>
- #include <boost/random/uniform_01.hpp>
- namespace boost {
- namespace random {
- /**
- * The generalized inverse gaussian distribution is a real-valued distribution with
- * three parameters p, a, and b. It produced values > 0.
- *
- * It has
- * \f$\displaystyle p(x) = \frac{(a / b)^{p / 2}}{2 K_{p}(\sqrt{a b})} x^{p - 1} e^{-(a x + b / 2) / 2}\f$.
- * where \f$\displaystyle K_{p}\f$ is a modified Bessel function of the second kind.
- *
- * The algorithm used is from
- *
- * @blockquote
- * "Random variate generation for the generalized inverse Gaussian distribution",
- * Luc Devroye,
- * Statistics and Computing,
- * Volume 24, 2014, Pages 236 - 246
- * @endblockquote
- */
- template<class RealType = double>
- class generalized_inverse_gaussian_distribution
- {
- public:
- typedef RealType result_type;
- typedef RealType input_type;
- class param_type {
- public:
- typedef generalized_inverse_gaussian_distribution distribution_type;
- /**
- * Constructs a @c param_type object from the "p", "a", and "b"
- * parameters.
- *
- * Requires:
- * a > 0 && b >= 0 if p > 0,
- * a > 0 && b > 0 if p == 0,
- * a >= 0 && b > 0 if p < 0
- */
- explicit param_type(RealType p_arg = RealType(1.0),
- RealType a_arg = RealType(1.0),
- RealType b_arg = RealType(1.0))
- : _p(p_arg), _a(a_arg), _b(b_arg)
- {
- BOOST_ASSERT(
- (p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) ||
- (p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) ||
- (p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0))
- );
- }
- /** Returns the "p" parameter of the distribution. */
- RealType p() const { return _p; }
- /** Returns the "a" parameter of the distribution. */
- RealType a() const { return _a; }
- /** Returns the "b" parameter of the distribution. */
- RealType b() const { return _b; }
- /** Writes a @c param_type to a @c std::ostream. */
- BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm)
- {
- os << parm._p << ' ' << parm._a << ' ' << parm._b;
- return os;
- }
- /** Reads a @c param_type from a @c std::istream. */
- BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm)
- {
- is >> parm._p >> std::ws >> parm._a >> std::ws >> parm._b;
- return is;
- }
- /** Returns true if the two sets of parameters are the same. */
- BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs)
- { return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; }
- /** Returns true if the two sets of parameters are different. */
- BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type)
- private:
- RealType _p;
- RealType _a;
- RealType _b;
- };
- #ifndef BOOST_NO_LIMITS_COMPILE_TIME_CONSTANTS
- BOOST_STATIC_ASSERT(!std::numeric_limits<RealType>::is_integer);
- #endif
- /**
- * Constructs an @c generalized_inverse_gaussian_distribution from its "p", "a", and "b" parameters.
- *
- * Requires:
- * a > 0 && b >= 0 if p > 0,
- * a > 0 && b > 0 if p == 0,
- * a >= 0 && b > 0 if p < 0
- */
- explicit generalized_inverse_gaussian_distribution(RealType p_arg = RealType(1.0),
- RealType a_arg = RealType(1.0),
- RealType b_arg = RealType(1.0))
- : _p(p_arg), _a(a_arg), _b(b_arg)
- {
- BOOST_ASSERT(
- (p_arg > RealType(0) && a_arg > RealType(0) && b_arg >= RealType(0)) ||
- (p_arg == RealType(0) && a_arg > RealType(0) && b_arg > RealType(0)) ||
- (p_arg < RealType(0) && a_arg >= RealType(0) && b_arg > RealType(0))
- );
- init();
- }
- /** Constructs an @c generalized_inverse_gaussian_distribution from its parameters. */
- explicit generalized_inverse_gaussian_distribution(const param_type& parm)
- : _p(parm.p()), _a(parm.a()), _b(parm.b())
- {
- init();
- }
- /**
- * Returns a random variate distributed according to the
- * generalized inverse gaussian distribution.
- */
- template<class URNG>
- RealType operator()(URNG& urng) const
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::sqrt;
- using std::log;
- using std::min;
- using std::exp;
- using std::cosh;
- #endif
- RealType t = result_type(1);
- RealType s = result_type(1);
- RealType log_concave = -psi(result_type(1));
- if (log_concave >= result_type(.5) && log_concave <= result_type(2)) {
- t = result_type(1);
- } else if (log_concave > result_type(2)) {
- t = sqrt(result_type(2) / (_alpha + _abs_p));
- } else if (log_concave < result_type(.5)) {
- t = log(result_type(4) / (_alpha + result_type(2) * _abs_p));
- }
- log_concave = -psi(result_type(-1));
- if (log_concave >= result_type(.5) && log_concave <= result_type(2)) {
- s = result_type(1);
- } else if (log_concave > result_type(2)) {
- s = sqrt(result_type(4) / (_alpha * cosh(1) + _abs_p));
- } else if (log_concave < result_type(.5)) {
- s = min(result_type(1) / _abs_p, log(result_type(1) + result_type(1) / _alpha + sqrt(result_type(1) / (_alpha * _alpha) + result_type(2) / _alpha)));
- }
- RealType eta = -psi(t);
- RealType zeta = -psi_deriv(t);
- RealType theta = -psi(-s);
- RealType xi = psi_deriv(-s);
- RealType p = result_type(1) / xi;
- RealType r = result_type(1) / zeta;
- RealType t_deriv = t - r * eta;
- RealType s_deriv = s - p * theta;
- RealType q = t_deriv + s_deriv;
- RealType u = result_type(0);
- RealType v = result_type(0);
- RealType w = result_type(0);
- RealType cand = result_type(0);
- do
- {
- u = uniform_01<RealType>()(urng);
- v = uniform_01<RealType>()(urng);
- w = uniform_01<RealType>()(urng);
- if (u < q / (p + q + r)) {
- cand = -s_deriv + q * v;
- } else if (u < (q + r) / (p + q + r)) {
- cand = t_deriv - r * log(v);
- } else {
- cand = -s_deriv + p * log(v);
- }
- } while (w * chi(cand, s, t, s_deriv, t_deriv, eta, zeta, theta, xi) > exp(psi(cand)));
- cand = (_abs_p / _omega + sqrt(result_type(1) + _abs_p * _abs_p / (_omega * _omega))) * exp(cand);
- return _p > 0 ? cand * sqrt(_b / _a) : sqrt(_b / _a) / cand;
- }
- /**
- * Returns a random variate distributed accordint to the beta
- * distribution with parameters specified by @c param.
- */
- template<class URNG>
- result_type operator()(URNG& urng, const param_type& parm) const
- {
- return generalized_inverse_gaussian_distribution(parm)(urng);
- }
- /** Returns the "p" parameter of the distribution. */
- RealType p() const { return _p; }
- /** Returns the "a" parameter of the distribution. */
- RealType a() const { return _a; }
- /** Returns the "b" parameter of the distribution. */
- RealType b() const { return _b; }
- /** Returns the smallest value that the distribution can produce. */
- RealType min BOOST_PREVENT_MACRO_SUBSTITUTION () const
- { return RealType(0.0); }
- /** Returns the largest value that the distribution can produce. */
- RealType max BOOST_PREVENT_MACRO_SUBSTITUTION () const
- { return (std::numeric_limits<RealType>::infinity)(); }
- /** Returns the parameters of the distribution. */
- param_type param() const { return param_type(_p, _a, _b); }
- /** Sets the parameters of the distribution. */
- void param(const param_type& parm)
- {
- _p = parm.p();
- _a = parm.a();
- _b = parm.b();
- init();
- }
- /**
- * Effects: Subsequent uses of the distribution do not depend
- * on values produced by any engine prior to invoking reset.
- */
- void reset() { }
- /** Writes an @c generalized_inverse_gaussian_distribution to a @c std::ostream. */
- BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, generalized_inverse_gaussian_distribution, wd)
- {
- os << wd.param();
- return os;
- }
- /** Reads an @c generalized_inverse_gaussian_distribution from a @c std::istream. */
- BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, generalized_inverse_gaussian_distribution, wd)
- {
- param_type parm;
- if(is >> parm) {
- wd.param(parm);
- }
- return is;
- }
- /**
- * Returns true if the two instances of @c generalized_inverse_gaussian_distribution will
- * return identical sequences of values given equal generators.
- */
- BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(generalized_inverse_gaussian_distribution, lhs, rhs)
- { return lhs._p == rhs._p && lhs._a == rhs._a && lhs._b == rhs._b; }
- /**
- * Returns true if the two instances of @c generalized_inverse_gaussian_distribution will
- * return different sequences of values given equal generators.
- */
- BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(generalized_inverse_gaussian_distribution)
- private:
- RealType _p;
- RealType _a;
- RealType _b;
- // some data precomputed from the parameters
- RealType _abs_p;
- RealType _omega;
- RealType _alpha;
- /// \cond hide_private_members
- void init()
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::abs;
- using std::sqrt;
- #endif
- _abs_p = abs(_p);
- _omega = sqrt(_a * _b); // two-parameter representation (p, omega)
- _alpha = sqrt(_omega * _omega + _abs_p * _abs_p) - _abs_p;
- }
- result_type psi(const RealType& x) const
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::cosh;
- using std::exp;
- #endif
- return -_alpha * (cosh(x) - result_type(1)) - _abs_p * (exp(x) - x - result_type(1));
- }
- result_type psi_deriv(const RealType& x) const
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::sinh;
- using std::exp;
- #endif
- return -_alpha * sinh(x) - _abs_p * (exp(x) - result_type(1));
- }
- static result_type chi(const RealType& x,
- const RealType& s, const RealType& t,
- const RealType& s_deriv, const RealType& t_deriv,
- const RealType& eta, const RealType& zeta, const RealType& theta, const RealType& xi)
- {
- #ifndef BOOST_NO_STDC_NAMESPACE
- using std::exp;
- #endif
- if (x >= -s_deriv && x <= t_deriv) {
- return result_type(1);
- } else if (x > t_deriv) {
- return exp(-eta - zeta * (x - t));
- }
- return exp(-theta + xi * (x + s));
- }
- /// \endcond
- };
- } // namespace random
- using random::generalized_inverse_gaussian_distribution;
- } // namespace boost
- #endif // BOOST_GENERALIZED_RANDOM_INVERSE_GAUSSIAN_DISTRIBUTION_HPP
|