expint.hpp 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679
  1. // Copyright John Maddock 2007.
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_EXPINT_HPP
  6. #define BOOST_MATH_EXPINT_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #pragma warning(push)
  10. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  11. #endif
  12. #include <boost/math/tools/precision.hpp>
  13. #include <boost/math/tools/promotion.hpp>
  14. #include <boost/math/tools/fraction.hpp>
  15. #include <boost/math/tools/series.hpp>
  16. #include <boost/math/policies/error_handling.hpp>
  17. #include <boost/math/special_functions/math_fwd.hpp>
  18. #include <boost/math/special_functions/digamma.hpp>
  19. #include <boost/math/special_functions/log1p.hpp>
  20. #include <boost/math/special_functions/pow.hpp>
  21. namespace boost{ namespace math{
  22. template <class T, class Policy>
  23. inline typename tools::promote_args<T>::type
  24. expint(unsigned n, T z, const Policy& /*pol*/);
  25. namespace detail{
  26. template <class T>
  27. inline T expint_1_rational(const T& z, const mpl::int_<0>&)
  28. {
  29. // this function is never actually called
  30. BOOST_ASSERT(0);
  31. return z;
  32. }
  33. template <class T>
  34. T expint_1_rational(const T& z, const mpl::int_<53>&)
  35. {
  36. BOOST_MATH_STD_USING
  37. T result;
  38. if(z <= 1)
  39. {
  40. // Maximum Deviation Found: 2.006e-18
  41. // Expected Error Term: 2.006e-18
  42. // Max error found at double precision: 2.760e-17
  43. static const T Y = 0.66373538970947265625F;
  44. static const T P[6] = {
  45. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0865197248079397976498),
  46. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0320913665303559189999),
  47. BOOST_MATH_BIG_CONSTANT(T, 53, -0.245088216639761496153),
  48. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0368031736257943745142),
  49. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00399167106081113256961),
  50. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000111507792921197858394)
  51. };
  52. static const T Q[6] = {
  53. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  54. BOOST_MATH_BIG_CONSTANT(T, 53, 0.37091387659397013215),
  55. BOOST_MATH_BIG_CONSTANT(T, 53, 0.056770677104207528384),
  56. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00427347600017103698101),
  57. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000131049900798434683324),
  58. BOOST_MATH_BIG_CONSTANT(T, 53, -0.528611029520217142048e-6)
  59. };
  60. result = tools::evaluate_polynomial(P, z)
  61. / tools::evaluate_polynomial(Q, z);
  62. result += z - log(z) - Y;
  63. }
  64. else if(z < -boost::math::tools::log_min_value<T>())
  65. {
  66. // Maximum Deviation Found (interpolated): 1.444e-17
  67. // Max error found at double precision: 3.119e-17
  68. static const T P[11] = {
  69. BOOST_MATH_BIG_CONSTANT(T, 53, -0.121013190657725568138e-18),
  70. BOOST_MATH_BIG_CONSTANT(T, 53, -0.999999999999998811143),
  71. BOOST_MATH_BIG_CONSTANT(T, 53, -43.3058660811817946037),
  72. BOOST_MATH_BIG_CONSTANT(T, 53, -724.581482791462469795),
  73. BOOST_MATH_BIG_CONSTANT(T, 53, -6046.8250112711035463),
  74. BOOST_MATH_BIG_CONSTANT(T, 53, -27182.6254466733970467),
  75. BOOST_MATH_BIG_CONSTANT(T, 53, -66598.2652345418633509),
  76. BOOST_MATH_BIG_CONSTANT(T, 53, -86273.1567711649528784),
  77. BOOST_MATH_BIG_CONSTANT(T, 53, -54844.4587226402067411),
  78. BOOST_MATH_BIG_CONSTANT(T, 53, -14751.4895786128450662),
  79. BOOST_MATH_BIG_CONSTANT(T, 53, -1185.45720315201027667)
  80. };
  81. static const T Q[12] = {
  82. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  83. BOOST_MATH_BIG_CONSTANT(T, 53, 45.3058660811801465927),
  84. BOOST_MATH_BIG_CONSTANT(T, 53, 809.193214954550328455),
  85. BOOST_MATH_BIG_CONSTANT(T, 53, 7417.37624454689546708),
  86. BOOST_MATH_BIG_CONSTANT(T, 53, 38129.5594484818471461),
  87. BOOST_MATH_BIG_CONSTANT(T, 53, 113057.05869159631492),
  88. BOOST_MATH_BIG_CONSTANT(T, 53, 192104.047790227984431),
  89. BOOST_MATH_BIG_CONSTANT(T, 53, 180329.498380501819718),
  90. BOOST_MATH_BIG_CONSTANT(T, 53, 86722.3403467334749201),
  91. BOOST_MATH_BIG_CONSTANT(T, 53, 18455.4124737722049515),
  92. BOOST_MATH_BIG_CONSTANT(T, 53, 1229.20784182403048905),
  93. BOOST_MATH_BIG_CONSTANT(T, 53, -0.776491285282330997549)
  94. };
  95. T recip = 1 / z;
  96. result = 1 + tools::evaluate_polynomial(P, recip)
  97. / tools::evaluate_polynomial(Q, recip);
  98. result *= exp(-z) * recip;
  99. }
  100. else
  101. {
  102. result = 0;
  103. }
  104. return result;
  105. }
  106. template <class T>
  107. T expint_1_rational(const T& z, const mpl::int_<64>&)
  108. {
  109. BOOST_MATH_STD_USING
  110. T result;
  111. if(z <= 1)
  112. {
  113. // Maximum Deviation Found: 3.807e-20
  114. // Expected Error Term: 3.807e-20
  115. // Max error found at long double precision: 6.249e-20
  116. static const T Y = 0.66373538970947265625F;
  117. static const T P[6] = {
  118. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0865197248079397956816),
  119. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0275114007037026844633),
  120. BOOST_MATH_BIG_CONSTANT(T, 64, -0.246594388074877139824),
  121. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0237624819878732642231),
  122. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00259113319641673986276),
  123. BOOST_MATH_BIG_CONSTANT(T, 64, 0.30853660894346057053e-4)
  124. };
  125. static const T Q[7] = {
  126. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  127. BOOST_MATH_BIG_CONSTANT(T, 64, 0.317978365797784100273),
  128. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0393622602554758722511),
  129. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00204062029115966323229),
  130. BOOST_MATH_BIG_CONSTANT(T, 64, 0.732512107100088047854e-5),
  131. BOOST_MATH_BIG_CONSTANT(T, 64, -0.202872781770207871975e-5),
  132. BOOST_MATH_BIG_CONSTANT(T, 64, 0.52779248094603709945e-7)
  133. };
  134. result = tools::evaluate_polynomial(P, z)
  135. / tools::evaluate_polynomial(Q, z);
  136. result += z - log(z) - Y;
  137. }
  138. else if(z < -boost::math::tools::log_min_value<T>())
  139. {
  140. // Maximum Deviation Found (interpolated): 2.220e-20
  141. // Max error found at long double precision: 1.346e-19
  142. static const T P[14] = {
  143. BOOST_MATH_BIG_CONSTANT(T, 64, -0.534401189080684443046e-23),
  144. BOOST_MATH_BIG_CONSTANT(T, 64, -0.999999999999999999905),
  145. BOOST_MATH_BIG_CONSTANT(T, 64, -62.1517806091379402505),
  146. BOOST_MATH_BIG_CONSTANT(T, 64, -1568.45688271895145277),
  147. BOOST_MATH_BIG_CONSTANT(T, 64, -21015.3431990874009619),
  148. BOOST_MATH_BIG_CONSTANT(T, 64, -164333.011755931661949),
  149. BOOST_MATH_BIG_CONSTANT(T, 64, -777917.270775426696103),
  150. BOOST_MATH_BIG_CONSTANT(T, 64, -2244188.56195255112937),
  151. BOOST_MATH_BIG_CONSTANT(T, 64, -3888702.98145335643429),
  152. BOOST_MATH_BIG_CONSTANT(T, 64, -3909822.65621952648353),
  153. BOOST_MATH_BIG_CONSTANT(T, 64, -2149033.9538897398457),
  154. BOOST_MATH_BIG_CONSTANT(T, 64, -584705.537139793925189),
  155. BOOST_MATH_BIG_CONSTANT(T, 64, -65815.2605361889477244),
  156. BOOST_MATH_BIG_CONSTANT(T, 64, -2038.82870680427258038)
  157. };
  158. static const T Q[14] = {
  159. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  160. BOOST_MATH_BIG_CONSTANT(T, 64, 64.1517806091379399478),
  161. BOOST_MATH_BIG_CONSTANT(T, 64, 1690.76044393722763785),
  162. BOOST_MATH_BIG_CONSTANT(T, 64, 24035.9534033068949426),
  163. BOOST_MATH_BIG_CONSTANT(T, 64, 203679.998633572361706),
  164. BOOST_MATH_BIG_CONSTANT(T, 64, 1074661.58459976978285),
  165. BOOST_MATH_BIG_CONSTANT(T, 64, 3586552.65020899358773),
  166. BOOST_MATH_BIG_CONSTANT(T, 64, 7552186.84989547621411),
  167. BOOST_MATH_BIG_CONSTANT(T, 64, 9853333.79353054111434),
  168. BOOST_MATH_BIG_CONSTANT(T, 64, 7689642.74550683631258),
  169. BOOST_MATH_BIG_CONSTANT(T, 64, 3385553.35146759180739),
  170. BOOST_MATH_BIG_CONSTANT(T, 64, 763218.072732396428725),
  171. BOOST_MATH_BIG_CONSTANT(T, 64, 73930.2995984054930821),
  172. BOOST_MATH_BIG_CONSTANT(T, 64, 2063.86994219629165937)
  173. };
  174. T recip = 1 / z;
  175. result = 1 + tools::evaluate_polynomial(P, recip)
  176. / tools::evaluate_polynomial(Q, recip);
  177. result *= exp(-z) * recip;
  178. }
  179. else
  180. {
  181. result = 0;
  182. }
  183. return result;
  184. }
  185. template <class T>
  186. T expint_1_rational(const T& z, const mpl::int_<113>&)
  187. {
  188. BOOST_MATH_STD_USING
  189. T result;
  190. if(z <= 1)
  191. {
  192. // Maximum Deviation Found: 2.477e-35
  193. // Expected Error Term: 2.477e-35
  194. // Max error found at long double precision: 6.810e-35
  195. static const T Y = 0.66373538970947265625F;
  196. static const T P[10] = {
  197. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0865197248079397956434879099175975937),
  198. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0369066175910795772830865304506087759),
  199. BOOST_MATH_BIG_CONSTANT(T, 113, -0.24272036838415474665971599314725545),
  200. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0502166331248948515282379137550178307),
  201. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00768384138547489410285101483730424919),
  202. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000612574337702109683505224915484717162),
  203. BOOST_MATH_BIG_CONSTANT(T, 113, -0.380207107950635046971492617061708534e-4),
  204. BOOST_MATH_BIG_CONSTANT(T, 113, -0.136528159460768830763009294683628406e-5),
  205. BOOST_MATH_BIG_CONSTANT(T, 113, -0.346839106212658259681029388908658618e-7),
  206. BOOST_MATH_BIG_CONSTANT(T, 113, -0.340500302777838063940402160594523429e-9)
  207. };
  208. static const T Q[10] = {
  209. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  210. BOOST_MATH_BIG_CONSTANT(T, 113, 0.426568827778942588160423015589537302),
  211. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0841384046470893490592450881447510148),
  212. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0100557215850668029618957359471132995),
  213. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000799334870474627021737357294799839363),
  214. BOOST_MATH_BIG_CONSTANT(T, 113, 0.434452090903862735242423068552687688e-4),
  215. BOOST_MATH_BIG_CONSTANT(T, 113, 0.15829674748799079874182885081231252e-5),
  216. BOOST_MATH_BIG_CONSTANT(T, 113, 0.354406206738023762100882270033082198e-7),
  217. BOOST_MATH_BIG_CONSTANT(T, 113, 0.369373328141051577845488477377890236e-9),
  218. BOOST_MATH_BIG_CONSTANT(T, 113, -0.274149801370933606409282434677600112e-12)
  219. };
  220. result = tools::evaluate_polynomial(P, z)
  221. / tools::evaluate_polynomial(Q, z);
  222. result += z - log(z) - Y;
  223. }
  224. else if(z <= 4)
  225. {
  226. // Max error in interpolated form: 5.614e-35
  227. // Max error found at long double precision: 7.979e-35
  228. static const T Y = 0.70190334320068359375F;
  229. static const T P[16] = {
  230. BOOST_MATH_BIG_CONSTANT(T, 113, 0.298096656795020369955077350585959794),
  231. BOOST_MATH_BIG_CONSTANT(T, 113, 12.9314045995266142913135497455971247),
  232. BOOST_MATH_BIG_CONSTANT(T, 113, 226.144334921582637462526628217345501),
  233. BOOST_MATH_BIG_CONSTANT(T, 113, 2070.83670924261732722117682067381405),
  234. BOOST_MATH_BIG_CONSTANT(T, 113, 10715.1115684330959908244769731347186),
  235. BOOST_MATH_BIG_CONSTANT(T, 113, 30728.7876355542048019664777316053311),
  236. BOOST_MATH_BIG_CONSTANT(T, 113, 38520.6078609349855436936232610875297),
  237. BOOST_MATH_BIG_CONSTANT(T, 113, -27606.0780981527583168728339620565165),
  238. BOOST_MATH_BIG_CONSTANT(T, 113, -169026.485055785605958655247592604835),
  239. BOOST_MATH_BIG_CONSTANT(T, 113, -254361.919204983608659069868035092282),
  240. BOOST_MATH_BIG_CONSTANT(T, 113, -195765.706874132267953259272028679935),
  241. BOOST_MATH_BIG_CONSTANT(T, 113, -83352.6826013533205474990119962408675),
  242. BOOST_MATH_BIG_CONSTANT(T, 113, -19251.6828496869586415162597993050194),
  243. BOOST_MATH_BIG_CONSTANT(T, 113, -2226.64251774578542836725386936102339),
  244. BOOST_MATH_BIG_CONSTANT(T, 113, -109.009437301400845902228611986479816),
  245. BOOST_MATH_BIG_CONSTANT(T, 113, -1.51492042209561411434644938098833499)
  246. };
  247. static const T Q[16] = {
  248. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  249. BOOST_MATH_BIG_CONSTANT(T, 113, 46.734521442032505570517810766704587),
  250. BOOST_MATH_BIG_CONSTANT(T, 113, 908.694714348462269000247450058595655),
  251. BOOST_MATH_BIG_CONSTANT(T, 113, 9701.76053033673927362784882748513195),
  252. BOOST_MATH_BIG_CONSTANT(T, 113, 63254.2815292641314236625196594947774),
  253. BOOST_MATH_BIG_CONSTANT(T, 113, 265115.641285880437335106541757711092),
  254. BOOST_MATH_BIG_CONSTANT(T, 113, 732707.841188071900498536533086567735),
  255. BOOST_MATH_BIG_CONSTANT(T, 113, 1348514.02492635723327306628712057794),
  256. BOOST_MATH_BIG_CONSTANT(T, 113, 1649986.81455283047769673308781585991),
  257. BOOST_MATH_BIG_CONSTANT(T, 113, 1326000.828522976970116271208812099),
  258. BOOST_MATH_BIG_CONSTANT(T, 113, 683643.09490612171772350481773951341),
  259. BOOST_MATH_BIG_CONSTANT(T, 113, 217640.505137263607952365685653352229),
  260. BOOST_MATH_BIG_CONSTANT(T, 113, 40288.3467237411710881822569476155485),
  261. BOOST_MATH_BIG_CONSTANT(T, 113, 3932.89353979531632559232883283175754),
  262. BOOST_MATH_BIG_CONSTANT(T, 113, 169.845369689596739824177412096477219),
  263. BOOST_MATH_BIG_CONSTANT(T, 113, 2.17607292280092201170768401876895354)
  264. };
  265. T recip = 1 / z;
  266. result = Y + tools::evaluate_polynomial(P, recip)
  267. / tools::evaluate_polynomial(Q, recip);
  268. result *= exp(-z) * recip;
  269. }
  270. else if(z < -boost::math::tools::log_min_value<T>())
  271. {
  272. // Max error in interpolated form: 4.413e-35
  273. // Max error found at long double precision: 8.928e-35
  274. static const T P[19] = {
  275. BOOST_MATH_BIG_CONSTANT(T, 113, -0.559148411832951463689610809550083986e-40),
  276. BOOST_MATH_BIG_CONSTANT(T, 113, -0.999999999999999999999999999999999997),
  277. BOOST_MATH_BIG_CONSTANT(T, 113, -166.542326331163836642960118190147367),
  278. BOOST_MATH_BIG_CONSTANT(T, 113, -12204.639128796330005065904675153652),
  279. BOOST_MATH_BIG_CONSTANT(T, 113, -520807.069767086071806275022036146855),
  280. BOOST_MATH_BIG_CONSTANT(T, 113, -14435981.5242137970691490903863125326),
  281. BOOST_MATH_BIG_CONSTANT(T, 113, -274574945.737064301247496460758654196),
  282. BOOST_MATH_BIG_CONSTANT(T, 113, -3691611582.99810039356254671781473079),
  283. BOOST_MATH_BIG_CONSTANT(T, 113, -35622515944.8255047299363690814678763),
  284. BOOST_MATH_BIG_CONSTANT(T, 113, -248040014774.502043161750715548451142),
  285. BOOST_MATH_BIG_CONSTANT(T, 113, -1243190389769.53458416330946622607913),
  286. BOOST_MATH_BIG_CONSTANT(T, 113, -4441730126135.54739052731990368425339),
  287. BOOST_MATH_BIG_CONSTANT(T, 113, -11117043181899.7388524310281751971366),
  288. BOOST_MATH_BIG_CONSTANT(T, 113, -18976497615396.9717776601813519498961),
  289. BOOST_MATH_BIG_CONSTANT(T, 113, -21237496819711.1011661104761906067131),
  290. BOOST_MATH_BIG_CONSTANT(T, 113, -14695899122092.5161620333466757812848),
  291. BOOST_MATH_BIG_CONSTANT(T, 113, -5737221535080.30569711574295785864903),
  292. BOOST_MATH_BIG_CONSTANT(T, 113, -1077042281708.42654526404581272546244),
  293. BOOST_MATH_BIG_CONSTANT(T, 113, -68028222642.1941480871395695677675137)
  294. };
  295. static const T Q[20] = {
  296. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  297. BOOST_MATH_BIG_CONSTANT(T, 113, 168.542326331163836642960118190147311),
  298. BOOST_MATH_BIG_CONSTANT(T, 113, 12535.7237814586576783518249115343619),
  299. BOOST_MATH_BIG_CONSTANT(T, 113, 544891.263372016404143120911148640627),
  300. BOOST_MATH_BIG_CONSTANT(T, 113, 15454474.7241010258634446523045237762),
  301. BOOST_MATH_BIG_CONSTANT(T, 113, 302495899.896629522673410325891717381),
  302. BOOST_MATH_BIG_CONSTANT(T, 113, 4215565948.38886507646911672693270307),
  303. BOOST_MATH_BIG_CONSTANT(T, 113, 42552409471.7951815668506556705733344),
  304. BOOST_MATH_BIG_CONSTANT(T, 113, 313592377066.753173979584098301610186),
  305. BOOST_MATH_BIG_CONSTANT(T, 113, 1688763640223.4541980740597514904542),
  306. BOOST_MATH_BIG_CONSTANT(T, 113, 6610992294901.59589748057620192145704),
  307. BOOST_MATH_BIG_CONSTANT(T, 113, 18601637235659.6059890851321772682606),
  308. BOOST_MATH_BIG_CONSTANT(T, 113, 36944278231087.2571020964163402941583),
  309. BOOST_MATH_BIG_CONSTANT(T, 113, 50425858518481.7497071917028793820058),
  310. BOOST_MATH_BIG_CONSTANT(T, 113, 45508060902865.0899967797848815980644),
  311. BOOST_MATH_BIG_CONSTANT(T, 113, 25649955002765.3817331501988304758142),
  312. BOOST_MATH_BIG_CONSTANT(T, 113, 8259575619094.6518520988612711292331),
  313. BOOST_MATH_BIG_CONSTANT(T, 113, 1299981487496.12607474362723586264515),
  314. BOOST_MATH_BIG_CONSTANT(T, 113, 70242279152.8241187845178443118302693),
  315. BOOST_MATH_BIG_CONSTANT(T, 113, -37633302.9409263839042721539363416685)
  316. };
  317. T recip = 1 / z;
  318. result = 1 + tools::evaluate_polynomial(P, recip)
  319. / tools::evaluate_polynomial(Q, recip);
  320. result *= exp(-z) * recip;
  321. }
  322. else
  323. {
  324. result = 0;
  325. }
  326. return result;
  327. }
  328. template <class T>
  329. struct expint_fraction
  330. {
  331. typedef std::pair<T,T> result_type;
  332. expint_fraction(unsigned n_, T z_) : b(n_ + z_), i(-1), n(n_){}
  333. std::pair<T,T> operator()()
  334. {
  335. std::pair<T,T> result = std::make_pair(-static_cast<T>((i+1) * (n+i)), b);
  336. b += 2;
  337. ++i;
  338. return result;
  339. }
  340. private:
  341. T b;
  342. int i;
  343. unsigned n;
  344. };
  345. template <class T, class Policy>
  346. inline T expint_as_fraction(unsigned n, T z, const Policy& pol)
  347. {
  348. BOOST_MATH_STD_USING
  349. BOOST_MATH_INSTRUMENT_VARIABLE(z)
  350. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  351. expint_fraction<T> f(n, z);
  352. T result = tools::continued_fraction_b(
  353. f,
  354. boost::math::policies::get_epsilon<T, Policy>(),
  355. max_iter);
  356. policies::check_series_iterations<T>("boost::math::expint_continued_fraction<%1%>(unsigned,%1%)", max_iter, pol);
  357. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  358. BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
  359. result = exp(-z) / result;
  360. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  361. return result;
  362. }
  363. template <class T>
  364. struct expint_series
  365. {
  366. typedef T result_type;
  367. expint_series(unsigned k_, T z_, T x_k_, T denom_, T fact_)
  368. : k(k_), z(z_), x_k(x_k_), denom(denom_), fact(fact_){}
  369. T operator()()
  370. {
  371. x_k *= -z;
  372. denom += 1;
  373. fact *= ++k;
  374. return x_k / (denom * fact);
  375. }
  376. private:
  377. unsigned k;
  378. T z;
  379. T x_k;
  380. T denom;
  381. T fact;
  382. };
  383. template <class T, class Policy>
  384. inline T expint_as_series(unsigned n, T z, const Policy& pol)
  385. {
  386. BOOST_MATH_STD_USING
  387. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  388. BOOST_MATH_INSTRUMENT_VARIABLE(z)
  389. T result = 0;
  390. T x_k = -1;
  391. T denom = T(1) - n;
  392. T fact = 1;
  393. unsigned k = 0;
  394. for(; k < n - 1;)
  395. {
  396. result += x_k / (denom * fact);
  397. denom += 1;
  398. x_k *= -z;
  399. fact *= ++k;
  400. }
  401. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  402. result += pow(-z, static_cast<T>(n - 1))
  403. * (boost::math::digamma(static_cast<T>(n)) - log(z)) / fact;
  404. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  405. expint_series<T> s(k, z, x_k, denom, fact);
  406. result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
  407. policies::check_series_iterations<T>("boost::math::expint_series<%1%>(unsigned,%1%)", max_iter, pol);
  408. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  409. BOOST_MATH_INSTRUMENT_VARIABLE(max_iter)
  410. return result;
  411. }
  412. template <class T, class Policy, class Tag>
  413. T expint_imp(unsigned n, T z, const Policy& pol, const Tag& tag)
  414. {
  415. BOOST_MATH_STD_USING
  416. static const char* function = "boost::math::expint<%1%>(unsigned, %1%)";
  417. if(z < 0)
  418. return policies::raise_domain_error<T>(function, "Function requires z >= 0 but got %1%.", z, pol);
  419. if(z == 0)
  420. return n == 1 ? policies::raise_overflow_error<T>(function, 0, pol) : T(1 / (static_cast<T>(n - 1)));
  421. T result;
  422. bool f;
  423. if(n < 3)
  424. {
  425. f = z < 0.5;
  426. }
  427. else
  428. {
  429. f = z < (static_cast<T>(n - 2) / static_cast<T>(n - 1));
  430. }
  431. #ifdef BOOST_MSVC
  432. # pragma warning(push)
  433. # pragma warning(disable:4127) // conditional expression is constant
  434. #endif
  435. if(n == 0)
  436. result = exp(-z) / z;
  437. else if((n == 1) && (Tag::value))
  438. {
  439. result = expint_1_rational(z, tag);
  440. }
  441. else if(f)
  442. result = expint_as_series(n, z, pol);
  443. else
  444. result = expint_as_fraction(n, z, pol);
  445. #ifdef BOOST_MSVC
  446. # pragma warning(pop)
  447. #endif
  448. return result;
  449. }
  450. template <class T>
  451. struct expint_i_series
  452. {
  453. typedef T result_type;
  454. expint_i_series(T z_) : k(0), z_k(1), z(z_){}
  455. T operator()()
  456. {
  457. z_k *= z / ++k;
  458. return z_k / k;
  459. }
  460. private:
  461. unsigned k;
  462. T z_k;
  463. T z;
  464. };
  465. template <class T, class Policy>
  466. T expint_i_as_series(T z, const Policy& pol)
  467. {
  468. BOOST_MATH_STD_USING
  469. T result = log(z); // (log(z) - log(1 / z)) / 2;
  470. result += constants::euler<T>();
  471. expint_i_series<T> s(z);
  472. boost::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
  473. result = tools::sum_series(s, policies::get_epsilon<T, Policy>(), max_iter, result);
  474. policies::check_series_iterations<T>("boost::math::expint_i_series<%1%>(%1%)", max_iter, pol);
  475. return result;
  476. }
  477. template <class T, class Policy, class Tag>
  478. T expint_i_imp(T z, const Policy& pol, const Tag& tag)
  479. {
  480. static const char* function = "boost::math::expint<%1%>(%1%)";
  481. if(z < 0)
  482. return -expint_imp(1, T(-z), pol, tag);
  483. if(z == 0)
  484. return -policies::raise_overflow_error<T>(function, 0, pol);
  485. return expint_i_as_series(z, pol);
  486. }
  487. template <class T, class Policy>
  488. T expint_i_imp(T z, const Policy& pol, const mpl::int_<53>& tag)
  489. {
  490. BOOST_MATH_STD_USING
  491. static const char* function = "boost::math::expint<%1%>(%1%)";
  492. if(z < 0)
  493. return -expint_imp(1, T(-z), pol, tag);
  494. if(z == 0)
  495. return -policies::raise_overflow_error<T>(function, 0, pol);
  496. T result;
  497. if(z <= 6)
  498. {
  499. // Maximum Deviation Found: 2.852e-18
  500. // Expected Error Term: 2.852e-18
  501. // Max Error found at double precision = Poly: 2.636335e-16 Cheb: 4.187027e-16
  502. static const T P[10] = {
  503. BOOST_MATH_BIG_CONSTANT(T, 53, 2.98677224343598593013),
  504. BOOST_MATH_BIG_CONSTANT(T, 53, 0.356343618769377415068),
  505. BOOST_MATH_BIG_CONSTANT(T, 53, 0.780836076283730801839),
  506. BOOST_MATH_BIG_CONSTANT(T, 53, 0.114670926327032002811),
  507. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0499434773576515260534),
  508. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00726224593341228159561),
  509. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00115478237227804306827),
  510. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000116419523609765200999),
  511. BOOST_MATH_BIG_CONSTANT(T, 53, 0.798296365679269702435e-5),
  512. BOOST_MATH_BIG_CONSTANT(T, 53, 0.2777056254402008721e-6)
  513. };
  514. static const T Q[8] = {
  515. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  516. BOOST_MATH_BIG_CONSTANT(T, 53, -1.17090412365413911947),
  517. BOOST_MATH_BIG_CONSTANT(T, 53, 0.62215109846016746276),
  518. BOOST_MATH_BIG_CONSTANT(T, 53, -0.195114782069495403315),
  519. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0391523431392967238166),
  520. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00504800158663705747345),
  521. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000389034007436065401822),
  522. BOOST_MATH_BIG_CONSTANT(T, 53, -0.138972589601781706598e-4)
  523. };
  524. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 53, 1677624236387711.0);
  525. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 53, 4503599627370496.0);
  526. static const T r1 = static_cast<T>(c1 / c2);
  527. static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 53, 0.131401834143860282009280387409357165515556574352422001206362e-16);
  528. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  529. T t = (z / 3) - 1;
  530. result = tools::evaluate_polynomial(P, t)
  531. / tools::evaluate_polynomial(Q, t);
  532. t = (z - r1) - r2;
  533. result *= t;
  534. if(fabs(t) < 0.1)
  535. {
  536. result += boost::math::log1p(t / r, pol);
  537. }
  538. else
  539. {
  540. result += log(z / r);
  541. }
  542. }
  543. else if (z <= 10)
  544. {
  545. // Maximum Deviation Found: 6.546e-17
  546. // Expected Error Term: 6.546e-17
  547. // Max Error found at double precision = Poly: 6.890169e-17 Cheb: 6.772128e-17
  548. static const T Y = 1.158985137939453125F;
  549. static const T P[8] = {
  550. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00139324086199402804173),
  551. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0349921221823888744966),
  552. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0264095520754134848538),
  553. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00761224003005476438412),
  554. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00247496209592143627977),
  555. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000374885917942100256775),
  556. BOOST_MATH_BIG_CONSTANT(T, 53, -0.554086272024881826253e-4),
  557. BOOST_MATH_BIG_CONSTANT(T, 53, -0.396487648924804510056e-5)
  558. };
  559. static const T Q[8] = {
  560. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  561. BOOST_MATH_BIG_CONSTANT(T, 53, 0.744625566823272107711),
  562. BOOST_MATH_BIG_CONSTANT(T, 53, 0.329061095011767059236),
  563. BOOST_MATH_BIG_CONSTANT(T, 53, 0.100128624977313872323),
  564. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0223851099128506347278),
  565. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00365334190742316650106),
  566. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000402453408512476836472),
  567. BOOST_MATH_BIG_CONSTANT(T, 53, 0.263649630720255691787e-4)
  568. };
  569. T t = z / 2 - 4;
  570. result = Y + tools::evaluate_polynomial(P, t)
  571. / tools::evaluate_polynomial(Q, t);
  572. result *= exp(z) / z;
  573. result += z;
  574. }
  575. else if(z <= 20)
  576. {
  577. // Maximum Deviation Found: 1.843e-17
  578. // Expected Error Term: -1.842e-17
  579. // Max Error found at double precision = Poly: 4.375868e-17 Cheb: 5.860967e-17
  580. static const T Y = 1.0869731903076171875F;
  581. static const T P[9] = {
  582. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00893891094356945667451),
  583. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0484607730127134045806),
  584. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0652810444222236895772),
  585. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0478447572647309671455),
  586. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0226059218923777094596),
  587. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00720603636917482065907),
  588. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00155941947035972031334),
  589. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000209750022660200888349),
  590. BOOST_MATH_BIG_CONSTANT(T, 53, -0.138652200349182596186e-4)
  591. };
  592. static const T Q[9] = {
  593. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  594. BOOST_MATH_BIG_CONSTANT(T, 53, 1.97017214039061194971),
  595. BOOST_MATH_BIG_CONSTANT(T, 53, 1.86232465043073157508),
  596. BOOST_MATH_BIG_CONSTANT(T, 53, 1.09601437090337519977),
  597. BOOST_MATH_BIG_CONSTANT(T, 53, 0.438873285773088870812),
  598. BOOST_MATH_BIG_CONSTANT(T, 53, 0.122537731979686102756),
  599. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0233458478275769288159),
  600. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00278170769163303669021),
  601. BOOST_MATH_BIG_CONSTANT(T, 53, 0.000159150281166108755531)
  602. };
  603. T t = z / 5 - 3;
  604. result = Y + tools::evaluate_polynomial(P, t)
  605. / tools::evaluate_polynomial(Q, t);
  606. result *= exp(z) / z;
  607. result += z;
  608. }
  609. else if(z <= 40)
  610. {
  611. // Maximum Deviation Found: 5.102e-18
  612. // Expected Error Term: 5.101e-18
  613. // Max Error found at double precision = Poly: 1.441088e-16 Cheb: 1.864792e-16
  614. static const T Y = 1.03937530517578125F;
  615. static const T P[9] = {
  616. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00356165148914447597995),
  617. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0229930320357982333406),
  618. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0449814350482277917716),
  619. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0453759383048193402336),
  620. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0272050837209380717069),
  621. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00994403059883350813295),
  622. BOOST_MATH_BIG_CONSTANT(T, 53, -0.00207592267812291726961),
  623. BOOST_MATH_BIG_CONSTANT(T, 53, -0.000192178045857733706044),
  624. BOOST_MATH_BIG_CONSTANT(T, 53, -0.113161784705911400295e-9)
  625. };
  626. static const T Q[9] = {
  627. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  628. BOOST_MATH_BIG_CONSTANT(T, 53, 2.84354408840148561131),
  629. BOOST_MATH_BIG_CONSTANT(T, 53, 3.6599610090072393012),
  630. BOOST_MATH_BIG_CONSTANT(T, 53, 2.75088464344293083595),
  631. BOOST_MATH_BIG_CONSTANT(T, 53, 1.2985244073998398643),
  632. BOOST_MATH_BIG_CONSTANT(T, 53, 0.383213198510794507409),
  633. BOOST_MATH_BIG_CONSTANT(T, 53, 0.0651165455496281337831),
  634. BOOST_MATH_BIG_CONSTANT(T, 53, 0.00488071077519227853585)
  635. };
  636. T t = z / 10 - 3;
  637. result = Y + tools::evaluate_polynomial(P, t)
  638. / tools::evaluate_polynomial(Q, t);
  639. result *= exp(z) / z;
  640. result += z;
  641. }
  642. else
  643. {
  644. // Max Error found at double precision = 3.381886e-17
  645. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 53, 2.35385266837019985407899910749034804508871617254555467236651e17));
  646. static const T Y= 1.013065338134765625F;
  647. static const T P[6] = {
  648. BOOST_MATH_BIG_CONSTANT(T, 53, -0.0130653381347656243849),
  649. BOOST_MATH_BIG_CONSTANT(T, 53, 0.19029710559486576682),
  650. BOOST_MATH_BIG_CONSTANT(T, 53, 94.7365094537197236011),
  651. BOOST_MATH_BIG_CONSTANT(T, 53, -2516.35323679844256203),
  652. BOOST_MATH_BIG_CONSTANT(T, 53, 18932.0850014925993025),
  653. BOOST_MATH_BIG_CONSTANT(T, 53, -38703.1431362056714134)
  654. };
  655. static const T Q[7] = {
  656. BOOST_MATH_BIG_CONSTANT(T, 53, 1.0),
  657. BOOST_MATH_BIG_CONSTANT(T, 53, 61.9733592849439884145),
  658. BOOST_MATH_BIG_CONSTANT(T, 53, -2354.56211323420194283),
  659. BOOST_MATH_BIG_CONSTANT(T, 53, 22329.1459489893079041),
  660. BOOST_MATH_BIG_CONSTANT(T, 53, -70126.245140396567133),
  661. BOOST_MATH_BIG_CONSTANT(T, 53, 54738.2833147775537106),
  662. BOOST_MATH_BIG_CONSTANT(T, 53, 8297.16296356518409347)
  663. };
  664. T t = 1 / z;
  665. result = Y + tools::evaluate_polynomial(P, t)
  666. / tools::evaluate_polynomial(Q, t);
  667. if(z < 41)
  668. result *= exp(z) / z;
  669. else
  670. {
  671. // Avoid premature overflow if we can:
  672. t = z - 40;
  673. if(t > tools::log_max_value<T>())
  674. {
  675. result = policies::raise_overflow_error<T>(function, 0, pol);
  676. }
  677. else
  678. {
  679. result *= exp(z - 40) / z;
  680. if(result > tools::max_value<T>() / exp40)
  681. {
  682. result = policies::raise_overflow_error<T>(function, 0, pol);
  683. }
  684. else
  685. {
  686. result *= exp40;
  687. }
  688. }
  689. }
  690. result += z;
  691. }
  692. return result;
  693. }
  694. template <class T, class Policy>
  695. T expint_i_imp(T z, const Policy& pol, const mpl::int_<64>& tag)
  696. {
  697. BOOST_MATH_STD_USING
  698. static const char* function = "boost::math::expint<%1%>(%1%)";
  699. if(z < 0)
  700. return -expint_imp(1, T(-z), pol, tag);
  701. if(z == 0)
  702. return -policies::raise_overflow_error<T>(function, 0, pol);
  703. T result;
  704. if(z <= 6)
  705. {
  706. // Maximum Deviation Found: 3.883e-21
  707. // Expected Error Term: 3.883e-21
  708. // Max Error found at long double precision = Poly: 3.344801e-19 Cheb: 4.989937e-19
  709. static const T P[11] = {
  710. BOOST_MATH_BIG_CONSTANT(T, 64, 2.98677224343598593764),
  711. BOOST_MATH_BIG_CONSTANT(T, 64, 0.25891613550886736592),
  712. BOOST_MATH_BIG_CONSTANT(T, 64, 0.789323584998672832285),
  713. BOOST_MATH_BIG_CONSTANT(T, 64, 0.092432587824602399339),
  714. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0514236978728625906656),
  715. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00658477469745132977921),
  716. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00124914538197086254233),
  717. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000131429679565472408551),
  718. BOOST_MATH_BIG_CONSTANT(T, 64, 0.11293331317982763165e-4),
  719. BOOST_MATH_BIG_CONSTANT(T, 64, 0.629499283139417444244e-6),
  720. BOOST_MATH_BIG_CONSTANT(T, 64, 0.177833045143692498221e-7)
  721. };
  722. static const T Q[9] = {
  723. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  724. BOOST_MATH_BIG_CONSTANT(T, 64, -1.20352377969742325748),
  725. BOOST_MATH_BIG_CONSTANT(T, 64, 0.66707904942606479811),
  726. BOOST_MATH_BIG_CONSTANT(T, 64, -0.223014531629140771914),
  727. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0493340022262908008636),
  728. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00741934273050807310677),
  729. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00074353567782087939294),
  730. BOOST_MATH_BIG_CONSTANT(T, 64, -0.455861727069603367656e-4),
  731. BOOST_MATH_BIG_CONSTANT(T, 64, 0.131515429329812837701e-5)
  732. };
  733. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 64, 1677624236387711.0);
  734. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 64, 4503599627370496.0);
  735. static const T r1 = c1 / c2;
  736. static const T r2 = BOOST_MATH_BIG_CONSTANT(T, 64, 0.131401834143860282009280387409357165515556574352422001206362e-16);
  737. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  738. T t = (z / 3) - 1;
  739. result = tools::evaluate_polynomial(P, t)
  740. / tools::evaluate_polynomial(Q, t);
  741. t = (z - r1) - r2;
  742. result *= t;
  743. if(fabs(t) < 0.1)
  744. {
  745. result += boost::math::log1p(t / r, pol);
  746. }
  747. else
  748. {
  749. result += log(z / r);
  750. }
  751. }
  752. else if (z <= 10)
  753. {
  754. // Maximum Deviation Found: 2.622e-21
  755. // Expected Error Term: -2.622e-21
  756. // Max Error found at long double precision = Poly: 1.208328e-20 Cheb: 1.073723e-20
  757. static const T Y = 1.158985137939453125F;
  758. static const T P[9] = {
  759. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00139324086199409049399),
  760. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0345238388952337563247),
  761. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0382065278072592940767),
  762. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0156117003070560727392),
  763. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00383276012430495387102),
  764. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000697070540945496497992),
  765. BOOST_MATH_BIG_CONSTANT(T, 64, -0.877310384591205930343e-4),
  766. BOOST_MATH_BIG_CONSTANT(T, 64, -0.623067256376494930067e-5),
  767. BOOST_MATH_BIG_CONSTANT(T, 64, -0.377246883283337141444e-6)
  768. };
  769. static const T Q[10] = {
  770. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  771. BOOST_MATH_BIG_CONSTANT(T, 64, 1.08073635708902053767),
  772. BOOST_MATH_BIG_CONSTANT(T, 64, 0.553681133533942532909),
  773. BOOST_MATH_BIG_CONSTANT(T, 64, 0.176763647137553797451),
  774. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0387891748253869928121),
  775. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0060603004848394727017),
  776. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000670519492939992806051),
  777. BOOST_MATH_BIG_CONSTANT(T, 64, 0.4947357050100855646e-4),
  778. BOOST_MATH_BIG_CONSTANT(T, 64, 0.204339282037446434827e-5),
  779. BOOST_MATH_BIG_CONSTANT(T, 64, 0.146951181174930425744e-7)
  780. };
  781. T t = z / 2 - 4;
  782. result = Y + tools::evaluate_polynomial(P, t)
  783. / tools::evaluate_polynomial(Q, t);
  784. result *= exp(z) / z;
  785. result += z;
  786. }
  787. else if(z <= 20)
  788. {
  789. // Maximum Deviation Found: 3.220e-20
  790. // Expected Error Term: 3.220e-20
  791. // Max Error found at long double precision = Poly: 7.696841e-20 Cheb: 6.205163e-20
  792. static const T Y = 1.0869731903076171875F;
  793. static const T P[10] = {
  794. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00893891094356946995368),
  795. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0487562980088748775943),
  796. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0670568657950041926085),
  797. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0509577352851442932713),
  798. BOOST_MATH_BIG_CONSTANT(T, 64, -0.02551800927409034206),
  799. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00892913759760086687083),
  800. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00224469630207344379888),
  801. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000392477245911296982776),
  802. BOOST_MATH_BIG_CONSTANT(T, 64, -0.44424044184395578775e-4),
  803. BOOST_MATH_BIG_CONSTANT(T, 64, -0.252788029251437017959e-5)
  804. };
  805. static const T Q[10] = {
  806. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  807. BOOST_MATH_BIG_CONSTANT(T, 64, 2.00323265503572414261),
  808. BOOST_MATH_BIG_CONSTANT(T, 64, 1.94688958187256383178),
  809. BOOST_MATH_BIG_CONSTANT(T, 64, 1.19733638134417472296),
  810. BOOST_MATH_BIG_CONSTANT(T, 64, 0.513137726038353385661),
  811. BOOST_MATH_BIG_CONSTANT(T, 64, 0.159135395578007264547),
  812. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0358233587351620919881),
  813. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0056716655597009417875),
  814. BOOST_MATH_BIG_CONSTANT(T, 64, 0.000577048986213535829925),
  815. BOOST_MATH_BIG_CONSTANT(T, 64, 0.290976943033493216793e-4)
  816. };
  817. T t = z / 5 - 3;
  818. result = Y + tools::evaluate_polynomial(P, t)
  819. / tools::evaluate_polynomial(Q, t);
  820. result *= exp(z) / z;
  821. result += z;
  822. }
  823. else if(z <= 40)
  824. {
  825. // Maximum Deviation Found: 2.940e-21
  826. // Expected Error Term: -2.938e-21
  827. // Max Error found at long double precision = Poly: 3.419893e-19 Cheb: 3.359874e-19
  828. static const T Y = 1.03937530517578125F;
  829. static const T P[12] = {
  830. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00356165148914447278177),
  831. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0240235006148610849678),
  832. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0516699967278057976119),
  833. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0586603078706856245674),
  834. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0409960120868776180825),
  835. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0185485073689590665153),
  836. BOOST_MATH_BIG_CONSTANT(T, 64, -0.00537842101034123222417),
  837. BOOST_MATH_BIG_CONSTANT(T, 64, -0.000920988084778273760609),
  838. BOOST_MATH_BIG_CONSTANT(T, 64, -0.716742618812210980263e-4),
  839. BOOST_MATH_BIG_CONSTANT(T, 64, -0.504623302166487346677e-9),
  840. BOOST_MATH_BIG_CONSTANT(T, 64, 0.712662196671896837736e-10),
  841. BOOST_MATH_BIG_CONSTANT(T, 64, -0.533769629702262072175e-11)
  842. };
  843. static const T Q[9] = {
  844. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  845. BOOST_MATH_BIG_CONSTANT(T, 64, 3.13286733695729715455),
  846. BOOST_MATH_BIG_CONSTANT(T, 64, 4.49281223045653491929),
  847. BOOST_MATH_BIG_CONSTANT(T, 64, 3.84900294427622911374),
  848. BOOST_MATH_BIG_CONSTANT(T, 64, 2.15205199043580378211),
  849. BOOST_MATH_BIG_CONSTANT(T, 64, 0.802912186540269232424),
  850. BOOST_MATH_BIG_CONSTANT(T, 64, 0.194793170017818925388),
  851. BOOST_MATH_BIG_CONSTANT(T, 64, 0.0280128013584653182994),
  852. BOOST_MATH_BIG_CONSTANT(T, 64, 0.00182034930799902922549)
  853. };
  854. T t = z / 10 - 3;
  855. result = Y + tools::evaluate_polynomial(P, t)
  856. / tools::evaluate_polynomial(Q, t);
  857. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  858. result *= exp(z) / z;
  859. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  860. result += z;
  861. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  862. }
  863. else
  864. {
  865. // Maximum Deviation Found: 3.536e-20
  866. // Max Error found at long double precision = Poly: 1.310671e-19 Cheb: 8.630943e-11
  867. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.35385266837019985407899910749034804508871617254555467236651e17));
  868. static const T Y= 1.013065338134765625F;
  869. static const T P[9] = {
  870. BOOST_MATH_BIG_CONSTANT(T, 64, -0.0130653381347656250004),
  871. BOOST_MATH_BIG_CONSTANT(T, 64, 0.644487780349757303739),
  872. BOOST_MATH_BIG_CONSTANT(T, 64, 143.995670348227433964),
  873. BOOST_MATH_BIG_CONSTANT(T, 64, -13918.9322758014173709),
  874. BOOST_MATH_BIG_CONSTANT(T, 64, 476260.975133624194484),
  875. BOOST_MATH_BIG_CONSTANT(T, 64, -7437102.15135982802122),
  876. BOOST_MATH_BIG_CONSTANT(T, 64, 53732298.8764767916542),
  877. BOOST_MATH_BIG_CONSTANT(T, 64, -160695051.957997452509),
  878. BOOST_MATH_BIG_CONSTANT(T, 64, 137839271.592778020028)
  879. };
  880. static const T Q[9] = {
  881. BOOST_MATH_BIG_CONSTANT(T, 64, 1.0),
  882. BOOST_MATH_BIG_CONSTANT(T, 64, 27.2103343964943718802),
  883. BOOST_MATH_BIG_CONSTANT(T, 64, -8785.48528692879413676),
  884. BOOST_MATH_BIG_CONSTANT(T, 64, 397530.290000322626766),
  885. BOOST_MATH_BIG_CONSTANT(T, 64, -7356441.34957799368252),
  886. BOOST_MATH_BIG_CONSTANT(T, 64, 63050914.5343400957524),
  887. BOOST_MATH_BIG_CONSTANT(T, 64, -246143779.638307701369),
  888. BOOST_MATH_BIG_CONSTANT(T, 64, 384647824.678554961174),
  889. BOOST_MATH_BIG_CONSTANT(T, 64, -166288297.874583961493)
  890. };
  891. T t = 1 / z;
  892. result = Y + tools::evaluate_polynomial(P, t)
  893. / tools::evaluate_polynomial(Q, t);
  894. if(z < 41)
  895. result *= exp(z) / z;
  896. else
  897. {
  898. // Avoid premature overflow if we can:
  899. t = z - 40;
  900. if(t > tools::log_max_value<T>())
  901. {
  902. result = policies::raise_overflow_error<T>(function, 0, pol);
  903. }
  904. else
  905. {
  906. result *= exp(z - 40) / z;
  907. if(result > tools::max_value<T>() / exp40)
  908. {
  909. result = policies::raise_overflow_error<T>(function, 0, pol);
  910. }
  911. else
  912. {
  913. result *= exp40;
  914. }
  915. }
  916. }
  917. result += z;
  918. }
  919. return result;
  920. }
  921. template <class T, class Policy>
  922. void expint_i_imp_113a(T& result, const T& z, const Policy& pol)
  923. {
  924. BOOST_MATH_STD_USING
  925. // Maximum Deviation Found: 1.230e-36
  926. // Expected Error Term: -1.230e-36
  927. // Max Error found at long double precision = Poly: 4.355299e-34 Cheb: 7.512581e-34
  928. static const T P[15] = {
  929. BOOST_MATH_BIG_CONSTANT(T, 113, 2.98677224343598593765287235997328555),
  930. BOOST_MATH_BIG_CONSTANT(T, 113, -0.333256034674702967028780537349334037),
  931. BOOST_MATH_BIG_CONSTANT(T, 113, 0.851831522798101228384971644036708463),
  932. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0657854833494646206186773614110374948),
  933. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0630065662557284456000060708977935073),
  934. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00311759191425309373327784154659649232),
  935. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00176213568201493949664478471656026771),
  936. BOOST_MATH_BIG_CONSTANT(T, 113, -0.491548660404172089488535218163952295e-4),
  937. BOOST_MATH_BIG_CONSTANT(T, 113, 0.207764227621061706075562107748176592e-4),
  938. BOOST_MATH_BIG_CONSTANT(T, 113, -0.225445398156913584846374273379402765e-6),
  939. BOOST_MATH_BIG_CONSTANT(T, 113, 0.996939977231410319761273881672601592e-7),
  940. BOOST_MATH_BIG_CONSTANT(T, 113, 0.212546902052178643330520878928100847e-9),
  941. BOOST_MATH_BIG_CONSTANT(T, 113, 0.154646053060262871360159325115980023e-9),
  942. BOOST_MATH_BIG_CONSTANT(T, 113, 0.143971277122049197323415503594302307e-11),
  943. BOOST_MATH_BIG_CONSTANT(T, 113, 0.306243138978114692252817805327426657e-13)
  944. };
  945. static const T Q[15] = {
  946. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  947. BOOST_MATH_BIG_CONSTANT(T, 113, -1.40178870313943798705491944989231793),
  948. BOOST_MATH_BIG_CONSTANT(T, 113, 0.943810968269701047641218856758605284),
  949. BOOST_MATH_BIG_CONSTANT(T, 113, -0.405026631534345064600850391026113165),
  950. BOOST_MATH_BIG_CONSTANT(T, 113, 0.123924153524614086482627660399122762),
  951. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0286364505373369439591132549624317707),
  952. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00516148845910606985396596845494015963),
  953. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000738330799456364820380739850924783649),
  954. BOOST_MATH_BIG_CONSTANT(T, 113, 0.843737760991856114061953265870882637e-4),
  955. BOOST_MATH_BIG_CONSTANT(T, 113, -0.767957673431982543213661388914587589e-5),
  956. BOOST_MATH_BIG_CONSTANT(T, 113, 0.549136847313854595809952100614840031e-6),
  957. BOOST_MATH_BIG_CONSTANT(T, 113, -0.299801381513743676764008325949325404e-7),
  958. BOOST_MATH_BIG_CONSTANT(T, 113, 0.118419479055346106118129130945423483e-8),
  959. BOOST_MATH_BIG_CONSTANT(T, 113, -0.30372295663095470359211949045344607e-10),
  960. BOOST_MATH_BIG_CONSTANT(T, 113, 0.382742953753485333207877784720070523e-12)
  961. };
  962. static const T c1 = BOOST_MATH_BIG_CONSTANT(T, 113, 1677624236387711.0);
  963. static const T c2 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  964. static const T c3 = BOOST_MATH_BIG_CONSTANT(T, 113, 266514582277687.0);
  965. static const T c4 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  966. static const T c5 = BOOST_MATH_BIG_CONSTANT(T, 113, 4503599627370496.0);
  967. static const T r1 = c1 / c2;
  968. static const T r2 = c3 / c4 / c5;
  969. static const T r3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.283806480836357377069325311780969887585024578164571984232357e-31));
  970. static const T r = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 0.372507410781366634461991866580119133535689497771654051555657435242200120636201854384926049951548942392));
  971. T t = (z / 3) - 1;
  972. result = tools::evaluate_polynomial(P, t)
  973. / tools::evaluate_polynomial(Q, t);
  974. t = ((z - r1) - r2) - r3;
  975. result *= t;
  976. if(fabs(t) < 0.1)
  977. {
  978. result += boost::math::log1p(t / r, pol);
  979. }
  980. else
  981. {
  982. result += log(z / r);
  983. }
  984. }
  985. template <class T>
  986. void expint_i_113b(T& result, const T& z)
  987. {
  988. BOOST_MATH_STD_USING
  989. // Maximum Deviation Found: 7.779e-36
  990. // Expected Error Term: -7.779e-36
  991. // Max Error found at long double precision = Poly: 2.576723e-35 Cheb: 1.236001e-34
  992. static const T Y = 1.158985137939453125F;
  993. static const T P[15] = {
  994. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139324086199409049282472239613554817),
  995. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338173111691991289178779840307998955),
  996. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0555972290794371306259684845277620556),
  997. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0378677976003456171563136909186202177),
  998. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0152221583517528358782902783914356667),
  999. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00428283334203873035104248217403126905),
  1000. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000922782631491644846511553601323435286),
  1001. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000155513428088853161562660696055496696),
  1002. BOOST_MATH_BIG_CONSTANT(T, 113, -0.205756580255359882813545261519317096e-4),
  1003. BOOST_MATH_BIG_CONSTANT(T, 113, -0.220327406578552089820753181821115181e-5),
  1004. BOOST_MATH_BIG_CONSTANT(T, 113, -0.189483157545587592043421445645377439e-6),
  1005. BOOST_MATH_BIG_CONSTANT(T, 113, -0.122426571518570587750898968123803867e-7),
  1006. BOOST_MATH_BIG_CONSTANT(T, 113, -0.635187358949437991465353268374523944e-9),
  1007. BOOST_MATH_BIG_CONSTANT(T, 113, -0.203015132965870311935118337194860863e-10),
  1008. BOOST_MATH_BIG_CONSTANT(T, 113, -0.384276705503357655108096065452950822e-12)
  1009. };
  1010. static const T Q[15] = {
  1011. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1012. BOOST_MATH_BIG_CONSTANT(T, 113, 1.58784732785354597996617046880946257),
  1013. BOOST_MATH_BIG_CONSTANT(T, 113, 1.18550755302279446339364262338114098),
  1014. BOOST_MATH_BIG_CONSTANT(T, 113, 0.55598993549661368604527040349702836),
  1015. BOOST_MATH_BIG_CONSTANT(T, 113, 0.184290888380564236919107835030984453),
  1016. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0459658051803613282360464632326866113),
  1017. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0089505064268613225167835599456014705),
  1018. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00139042673882987693424772855926289077),
  1019. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000174210708041584097450805790176479012),
  1020. BOOST_MATH_BIG_CONSTANT(T, 113, 0.176324034009707558089086875136647376e-4),
  1021. BOOST_MATH_BIG_CONSTANT(T, 113, 0.142935845999505649273084545313710581e-5),
  1022. BOOST_MATH_BIG_CONSTANT(T, 113, 0.907502324487057260675816233312747784e-7),
  1023. BOOST_MATH_BIG_CONSTANT(T, 113, 0.431044337808893270797934621235918418e-8),
  1024. BOOST_MATH_BIG_CONSTANT(T, 113, 0.139007266881450521776529705677086902e-9),
  1025. BOOST_MATH_BIG_CONSTANT(T, 113, 0.234715286125516430792452741830364672e-11)
  1026. };
  1027. T t = z / 2 - 4;
  1028. result = Y + tools::evaluate_polynomial(P, t)
  1029. / tools::evaluate_polynomial(Q, t);
  1030. result *= exp(z) / z;
  1031. result += z;
  1032. }
  1033. template <class T>
  1034. void expint_i_113c(T& result, const T& z)
  1035. {
  1036. BOOST_MATH_STD_USING
  1037. // Maximum Deviation Found: 1.082e-34
  1038. // Expected Error Term: 1.080e-34
  1039. // Max Error found at long double precision = Poly: 1.958294e-34 Cheb: 2.472261e-34
  1040. static const T Y = 1.091579437255859375F;
  1041. static const T P[17] = {
  1042. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00685089599550151282724924894258520532),
  1043. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0443313550253580053324487059748497467),
  1044. BOOST_MATH_BIG_CONSTANT(T, 113, -0.071538561252424027443296958795814874),
  1045. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0622923153354102682285444067843300583),
  1046. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0361631270264607478205393775461208794),
  1047. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0153192826839624850298106509601033261),
  1048. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00496967904961260031539602977748408242),
  1049. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126989079663425780800919171538920589),
  1050. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000258933143097125199914724875206326698),
  1051. BOOST_MATH_BIG_CONSTANT(T, 113, -0.422110326689204794443002330541441956e-4),
  1052. BOOST_MATH_BIG_CONSTANT(T, 113, -0.546004547590412661451073996127115221e-5),
  1053. BOOST_MATH_BIG_CONSTANT(T, 113, -0.546775260262202177131068692199272241e-6),
  1054. BOOST_MATH_BIG_CONSTANT(T, 113, -0.404157632825805803833379568956559215e-7),
  1055. BOOST_MATH_BIG_CONSTANT(T, 113, -0.200612596196561323832327013027419284e-8),
  1056. BOOST_MATH_BIG_CONSTANT(T, 113, -0.502538501472133913417609379765434153e-10),
  1057. BOOST_MATH_BIG_CONSTANT(T, 113, -0.326283053716799774936661568391296584e-13),
  1058. BOOST_MATH_BIG_CONSTANT(T, 113, 0.869226483473172853557775877908693647e-15)
  1059. };
  1060. static const T Q[15] = {
  1061. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1062. BOOST_MATH_BIG_CONSTANT(T, 113, 2.23227220874479061894038229141871087),
  1063. BOOST_MATH_BIG_CONSTANT(T, 113, 2.40221000361027971895657505660959863),
  1064. BOOST_MATH_BIG_CONSTANT(T, 113, 1.65476320985936174728238416007084214),
  1065. BOOST_MATH_BIG_CONSTANT(T, 113, 0.816828602963895720369875535001248227),
  1066. BOOST_MATH_BIG_CONSTANT(T, 113, 0.306337922909446903672123418670921066),
  1067. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0902400121654409267774593230720600752),
  1068. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0212708882169429206498765100993228086),
  1069. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00404442626252467471957713495828165491),
  1070. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0006195601618842253612635241404054589),
  1071. BOOST_MATH_BIG_CONSTANT(T, 113, 0.755930932686543009521454653994321843e-4),
  1072. BOOST_MATH_BIG_CONSTANT(T, 113, 0.716004532773778954193609582677482803e-5),
  1073. BOOST_MATH_BIG_CONSTANT(T, 113, 0.500881663076471627699290821742924233e-6),
  1074. BOOST_MATH_BIG_CONSTANT(T, 113, 0.233593219218823384508105943657387644e-7),
  1075. BOOST_MATH_BIG_CONSTANT(T, 113, 0.554900353169148897444104962034267682e-9)
  1076. };
  1077. T t = z / 4 - 3.5;
  1078. result = Y + tools::evaluate_polynomial(P, t)
  1079. / tools::evaluate_polynomial(Q, t);
  1080. result *= exp(z) / z;
  1081. result += z;
  1082. }
  1083. template <class T>
  1084. void expint_i_113d(T& result, const T& z)
  1085. {
  1086. BOOST_MATH_STD_USING
  1087. // Maximum Deviation Found: 3.163e-35
  1088. // Expected Error Term: 3.163e-35
  1089. // Max Error found at long double precision = Poly: 4.158110e-35 Cheb: 5.385532e-35
  1090. static const T Y = 1.051731109619140625F;
  1091. static const T P[14] = {
  1092. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00144552494420652573815404828020593565),
  1093. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126747451594545338365684731262912741),
  1094. BOOST_MATH_BIG_CONSTANT(T, 113, -0.01757394877502366717526779263438073),
  1095. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0126838952395506921945756139424722588),
  1096. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0060045057928894974954756789352443522),
  1097. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00205349237147226126653803455793107903),
  1098. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000532606040579654887676082220195624207),
  1099. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000107344687098019891474772069139014662),
  1100. BOOST_MATH_BIG_CONSTANT(T, 113, -0.169536802705805811859089949943435152e-4),
  1101. BOOST_MATH_BIG_CONSTANT(T, 113, -0.20863311729206543881826553010120078e-5),
  1102. BOOST_MATH_BIG_CONSTANT(T, 113, -0.195670358542116256713560296776654385e-6),
  1103. BOOST_MATH_BIG_CONSTANT(T, 113, -0.133291168587253145439184028259772437e-7),
  1104. BOOST_MATH_BIG_CONSTANT(T, 113, -0.595500337089495614285777067722823397e-9),
  1105. BOOST_MATH_BIG_CONSTANT(T, 113, -0.133141358866324100955927979606981328e-10)
  1106. };
  1107. static const T Q[14] = {
  1108. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1109. BOOST_MATH_BIG_CONSTANT(T, 113, 1.72490783907582654629537013560044682),
  1110. BOOST_MATH_BIG_CONSTANT(T, 113, 1.44524329516800613088375685659759765),
  1111. BOOST_MATH_BIG_CONSTANT(T, 113, 0.778241785539308257585068744978050181),
  1112. BOOST_MATH_BIG_CONSTANT(T, 113, 0.300520486589206605184097270225725584),
  1113. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0879346899691339661394537806057953957),
  1114. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0200802415843802892793583043470125006),
  1115. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00362842049172586254520256100538273214),
  1116. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000519731362862955132062751246769469957),
  1117. BOOST_MATH_BIG_CONSTANT(T, 113, 0.584092147914050999895178697392282665e-4),
  1118. BOOST_MATH_BIG_CONSTANT(T, 113, 0.501851497707855358002773398333542337e-5),
  1119. BOOST_MATH_BIG_CONSTANT(T, 113, 0.313085677467921096644895738538865537e-6),
  1120. BOOST_MATH_BIG_CONSTANT(T, 113, 0.127552010539733113371132321521204458e-7),
  1121. BOOST_MATH_BIG_CONSTANT(T, 113, 0.25737310826983451144405899970774587e-9)
  1122. };
  1123. T t = z / 4 - 5.5;
  1124. result = Y + tools::evaluate_polynomial(P, t)
  1125. / tools::evaluate_polynomial(Q, t);
  1126. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1127. result *= exp(z) / z;
  1128. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1129. result += z;
  1130. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1131. }
  1132. template <class T>
  1133. void expint_i_113e(T& result, const T& z)
  1134. {
  1135. BOOST_MATH_STD_USING
  1136. // Maximum Deviation Found: 7.972e-36
  1137. // Expected Error Term: 7.962e-36
  1138. // Max Error found at long double precision = Poly: 1.711721e-34 Cheb: 3.100018e-34
  1139. static const T Y = 1.032726287841796875F;
  1140. static const T P[15] = {
  1141. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00141056919297307534690895009969373233),
  1142. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0123384175302540291339020257071411437),
  1143. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0298127270706864057791526083667396115),
  1144. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0390686759471630584626293670260768098),
  1145. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0338226792912607409822059922949035589),
  1146. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0211659736179834946452561197559654582),
  1147. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100428887460879377373158821400070313),
  1148. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00370717396015165148484022792801682932),
  1149. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0010768667551001624764329000496561659),
  1150. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000246127328761027039347584096573123531),
  1151. BOOST_MATH_BIG_CONSTANT(T, 113, -0.437318110527818613580613051861991198e-4),
  1152. BOOST_MATH_BIG_CONSTANT(T, 113, -0.587532682329299591501065482317771497e-5),
  1153. BOOST_MATH_BIG_CONSTANT(T, 113, -0.565697065670893984610852937110819467e-6),
  1154. BOOST_MATH_BIG_CONSTANT(T, 113, -0.350233957364028523971768887437839573e-7),
  1155. BOOST_MATH_BIG_CONSTANT(T, 113, -0.105428907085424234504608142258423505e-8)
  1156. };
  1157. static const T Q[16] = {
  1158. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1159. BOOST_MATH_BIG_CONSTANT(T, 113, 3.17261315255467581204685605414005525),
  1160. BOOST_MATH_BIG_CONSTANT(T, 113, 4.85267952971640525245338392887217426),
  1161. BOOST_MATH_BIG_CONSTANT(T, 113, 4.74341914912439861451492872946725151),
  1162. BOOST_MATH_BIG_CONSTANT(T, 113, 3.31108463283559911602405970817931801),
  1163. BOOST_MATH_BIG_CONSTANT(T, 113, 1.74657006336994649386607925179848899),
  1164. BOOST_MATH_BIG_CONSTANT(T, 113, 0.718255607416072737965933040353653244),
  1165. BOOST_MATH_BIG_CONSTANT(T, 113, 0.234037553177354542791975767960643864),
  1166. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0607470145906491602476833515412605389),
  1167. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0125048143774226921434854172947548724),
  1168. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00201034366420433762935768458656609163),
  1169. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000244823338417452367656368849303165721),
  1170. BOOST_MATH_BIG_CONSTANT(T, 113, 0.213511655166983177960471085462540807e-4),
  1171. BOOST_MATH_BIG_CONSTANT(T, 113, 0.119323998465870686327170541547982932e-5),
  1172. BOOST_MATH_BIG_CONSTANT(T, 113, 0.322153582559488797803027773591727565e-7),
  1173. BOOST_MATH_BIG_CONSTANT(T, 113, -0.161635525318683508633792845159942312e-16)
  1174. };
  1175. T t = z / 8 - 4.25;
  1176. result = Y + tools::evaluate_polynomial(P, t)
  1177. / tools::evaluate_polynomial(Q, t);
  1178. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1179. result *= exp(z) / z;
  1180. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1181. result += z;
  1182. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1183. }
  1184. template <class T>
  1185. void expint_i_113f(T& result, const T& z)
  1186. {
  1187. BOOST_MATH_STD_USING
  1188. // Maximum Deviation Found: 4.469e-36
  1189. // Expected Error Term: 4.468e-36
  1190. // Max Error found at long double precision = Poly: 1.288958e-35 Cheb: 2.304586e-35
  1191. static const T Y = 1.0216197967529296875F;
  1192. static const T P[12] = {
  1193. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000322999116096627043476023926572650045),
  1194. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00385606067447365187909164609294113346),
  1195. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00686514524727568176735949971985244415),
  1196. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00606260649593050194602676772589601799),
  1197. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00334382362017147544335054575436194357),
  1198. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00126108534260253075708625583630318043),
  1199. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000337881489347846058951220431209276776),
  1200. BOOST_MATH_BIG_CONSTANT(T, 113, -0.648480902304640018785370650254018022e-4),
  1201. BOOST_MATH_BIG_CONSTANT(T, 113, -0.87652644082970492211455290209092766e-5),
  1202. BOOST_MATH_BIG_CONSTANT(T, 113, -0.794712243338068631557849449519994144e-6),
  1203. BOOST_MATH_BIG_CONSTANT(T, 113, -0.434084023639508143975983454830954835e-7),
  1204. BOOST_MATH_BIG_CONSTANT(T, 113, -0.107839681938752337160494412638656696e-8)
  1205. };
  1206. static const T Q[12] = {
  1207. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1208. BOOST_MATH_BIG_CONSTANT(T, 113, 2.09913805456661084097134805151524958),
  1209. BOOST_MATH_BIG_CONSTANT(T, 113, 2.07041755535439919593503171320431849),
  1210. BOOST_MATH_BIG_CONSTANT(T, 113, 1.26406517226052371320416108604874734),
  1211. BOOST_MATH_BIG_CONSTANT(T, 113, 0.529689923703770353961553223973435569),
  1212. BOOST_MATH_BIG_CONSTANT(T, 113, 0.159578150879536711042269658656115746),
  1213. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0351720877642000691155202082629857131),
  1214. BOOST_MATH_BIG_CONSTANT(T, 113, 0.00565313621289648752407123620997063122),
  1215. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000646920278540515480093843570291218295),
  1216. BOOST_MATH_BIG_CONSTANT(T, 113, 0.499904084850091676776993523323213591e-4),
  1217. BOOST_MATH_BIG_CONSTANT(T, 113, 0.233740058688179614344680531486267142e-5),
  1218. BOOST_MATH_BIG_CONSTANT(T, 113, 0.498800627828842754845418576305379469e-7)
  1219. };
  1220. T t = z / 7 - 7;
  1221. result = Y + tools::evaluate_polynomial(P, t)
  1222. / tools::evaluate_polynomial(Q, t);
  1223. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1224. result *= exp(z) / z;
  1225. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1226. result += z;
  1227. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1228. }
  1229. template <class T>
  1230. void expint_i_113g(T& result, const T& z)
  1231. {
  1232. BOOST_MATH_STD_USING
  1233. // Maximum Deviation Found: 5.588e-35
  1234. // Expected Error Term: -5.566e-35
  1235. // Max Error found at long double precision = Poly: 9.976345e-35 Cheb: 8.358865e-35
  1236. static const T Y = 1.015148162841796875F;
  1237. static const T P[11] = {
  1238. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000435714784725086961464589957142615216),
  1239. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00432114324353830636009453048419094314),
  1240. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0100740363285526177522819204820582424),
  1241. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0116744115827059174392383504427640362),
  1242. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00816145387784261141360062395898644652),
  1243. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00371380272673500791322744465394211508),
  1244. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00112958263488611536502153195005736563),
  1245. BOOST_MATH_BIG_CONSTANT(T, 113, -0.000228316462389404645183269923754256664),
  1246. BOOST_MATH_BIG_CONSTANT(T, 113, -0.29462181955852860250359064291292577e-4),
  1247. BOOST_MATH_BIG_CONSTANT(T, 113, -0.21972450610957417963227028788460299e-5),
  1248. BOOST_MATH_BIG_CONSTANT(T, 113, -0.720558173805289167524715527536874694e-7)
  1249. };
  1250. static const T Q[11] = {
  1251. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1252. BOOST_MATH_BIG_CONSTANT(T, 113, 2.95918362458402597039366979529287095),
  1253. BOOST_MATH_BIG_CONSTANT(T, 113, 3.96472247520659077944638411856748924),
  1254. BOOST_MATH_BIG_CONSTANT(T, 113, 3.15563251550528513747923714884142131),
  1255. BOOST_MATH_BIG_CONSTANT(T, 113, 1.64674612007093983894215359287448334),
  1256. BOOST_MATH_BIG_CONSTANT(T, 113, 0.58695020129846594405856226787156424),
  1257. BOOST_MATH_BIG_CONSTANT(T, 113, 0.144358385319329396231755457772362793),
  1258. BOOST_MATH_BIG_CONSTANT(T, 113, 0.024146911506411684815134916238348063),
  1259. BOOST_MATH_BIG_CONSTANT(T, 113, 0.0026257132337460784266874572001650153),
  1260. BOOST_MATH_BIG_CONSTANT(T, 113, 0.000167479843750859222348869769094711093),
  1261. BOOST_MATH_BIG_CONSTANT(T, 113, 0.475673638665358075556452220192497036e-5)
  1262. };
  1263. T t = z / 14 - 5;
  1264. result = Y + tools::evaluate_polynomial(P, t)
  1265. / tools::evaluate_polynomial(Q, t);
  1266. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1267. result *= exp(z) / z;
  1268. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1269. result += z;
  1270. BOOST_MATH_INSTRUMENT_VARIABLE(result)
  1271. }
  1272. template <class T>
  1273. void expint_i_113h(T& result, const T& z)
  1274. {
  1275. BOOST_MATH_STD_USING
  1276. // Maximum Deviation Found: 4.448e-36
  1277. // Expected Error Term: 4.445e-36
  1278. // Max Error found at long double precision = Poly: 2.058532e-35 Cheb: 2.165465e-27
  1279. static const T Y= 1.00849151611328125F;
  1280. static const T P[9] = {
  1281. BOOST_MATH_BIG_CONSTANT(T, 113, -0.0084915161132812500000001440233607358),
  1282. BOOST_MATH_BIG_CONSTANT(T, 113, 1.84479378737716028341394223076147872),
  1283. BOOST_MATH_BIG_CONSTANT(T, 113, -130.431146923726715674081563022115568),
  1284. BOOST_MATH_BIG_CONSTANT(T, 113, 4336.26945491571504885214176203512015),
  1285. BOOST_MATH_BIG_CONSTANT(T, 113, -76279.0031974974730095170437591004177),
  1286. BOOST_MATH_BIG_CONSTANT(T, 113, 729577.956271997673695191455111727774),
  1287. BOOST_MATH_BIG_CONSTANT(T, 113, -3661928.69330208734947103004900349266),
  1288. BOOST_MATH_BIG_CONSTANT(T, 113, 8570600.041606912735872059184527855),
  1289. BOOST_MATH_BIG_CONSTANT(T, 113, -6758379.93672362080947905580906028645)
  1290. };
  1291. static const T Q[10] = {
  1292. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1293. BOOST_MATH_BIG_CONSTANT(T, 113, -99.4868026047611434569541483506091713),
  1294. BOOST_MATH_BIG_CONSTANT(T, 113, 3879.67753690517114249705089803055473),
  1295. BOOST_MATH_BIG_CONSTANT(T, 113, -76495.82413252517165830203774900806),
  1296. BOOST_MATH_BIG_CONSTANT(T, 113, 820773.726408311894342553758526282667),
  1297. BOOST_MATH_BIG_CONSTANT(T, 113, -4803087.64956923577571031564909646579),
  1298. BOOST_MATH_BIG_CONSTANT(T, 113, 14521246.227703545012713173740895477),
  1299. BOOST_MATH_BIG_CONSTANT(T, 113, -19762752.0196769712258527849159393044),
  1300. BOOST_MATH_BIG_CONSTANT(T, 113, 8354144.67882768405803322344185185517),
  1301. BOOST_MATH_BIG_CONSTANT(T, 113, 355076.853106511136734454134915432571)
  1302. };
  1303. T t = 1 / z;
  1304. result = Y + tools::evaluate_polynomial(P, t)
  1305. / tools::evaluate_polynomial(Q, t);
  1306. result *= exp(z) / z;
  1307. result += z;
  1308. }
  1309. template <class T, class Policy>
  1310. T expint_i_imp(T z, const Policy& pol, const mpl::int_<113>& tag)
  1311. {
  1312. BOOST_MATH_STD_USING
  1313. static const char* function = "boost::math::expint<%1%>(%1%)";
  1314. if(z < 0)
  1315. return -expint_imp(1, T(-z), pol, tag);
  1316. if(z == 0)
  1317. return -policies::raise_overflow_error<T>(function, 0, pol);
  1318. T result;
  1319. if(z <= 6)
  1320. {
  1321. expint_i_imp_113a(result, z, pol);
  1322. }
  1323. else if (z <= 10)
  1324. {
  1325. expint_i_113b(result, z);
  1326. }
  1327. else if(z <= 18)
  1328. {
  1329. expint_i_113c(result, z);
  1330. }
  1331. else if(z <= 26)
  1332. {
  1333. expint_i_113d(result, z);
  1334. }
  1335. else if(z <= 42)
  1336. {
  1337. expint_i_113e(result, z);
  1338. }
  1339. else if(z <= 56)
  1340. {
  1341. expint_i_113f(result, z);
  1342. }
  1343. else if(z <= 84)
  1344. {
  1345. expint_i_113g(result, z);
  1346. }
  1347. else if(z <= 210)
  1348. {
  1349. expint_i_113h(result, z);
  1350. }
  1351. else // z > 210
  1352. {
  1353. // Maximum Deviation Found: 3.963e-37
  1354. // Expected Error Term: 3.963e-37
  1355. // Max Error found at long double precision = Poly: 1.248049e-36 Cheb: 2.843486e-29
  1356. static const T exp40 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 113, 2.35385266837019985407899910749034804508871617254555467236651e17));
  1357. static const T Y= 1.00252532958984375F;
  1358. static const T P[8] = {
  1359. BOOST_MATH_BIG_CONSTANT(T, 113, -0.00252532958984375000000000000000000085),
  1360. BOOST_MATH_BIG_CONSTANT(T, 113, 1.16591386866059087390621952073890359),
  1361. BOOST_MATH_BIG_CONSTANT(T, 113, -67.8483431314018462417456828499277579),
  1362. BOOST_MATH_BIG_CONSTANT(T, 113, 1567.68688154683822956359536287575892),
  1363. BOOST_MATH_BIG_CONSTANT(T, 113, -17335.4683325819116482498725687644986),
  1364. BOOST_MATH_BIG_CONSTANT(T, 113, 93632.6567462673524739954389166550069),
  1365. BOOST_MATH_BIG_CONSTANT(T, 113, -225025.189335919133214440347510936787),
  1366. BOOST_MATH_BIG_CONSTANT(T, 113, 175864.614717440010942804684741336853)
  1367. };
  1368. static const T Q[9] = {
  1369. BOOST_MATH_BIG_CONSTANT(T, 113, 1.0),
  1370. BOOST_MATH_BIG_CONSTANT(T, 113, -65.6998869881600212224652719706425129),
  1371. BOOST_MATH_BIG_CONSTANT(T, 113, 1642.73850032324014781607859416890077),
  1372. BOOST_MATH_BIG_CONSTANT(T, 113, -19937.2610222467322481947237312818575),
  1373. BOOST_MATH_BIG_CONSTANT(T, 113, 124136.267326632742667972126625064538),
  1374. BOOST_MATH_BIG_CONSTANT(T, 113, -384614.251466704550678760562965502293),
  1375. BOOST_MATH_BIG_CONSTANT(T, 113, 523355.035910385688578278384032026998),
  1376. BOOST_MATH_BIG_CONSTANT(T, 113, -217809.552260834025885677791936351294),
  1377. BOOST_MATH_BIG_CONSTANT(T, 113, -8555.81719551123640677261226549550872)
  1378. };
  1379. T t = 1 / z;
  1380. result = Y + tools::evaluate_polynomial(P, t)
  1381. / tools::evaluate_polynomial(Q, t);
  1382. if(z < 41)
  1383. result *= exp(z) / z;
  1384. else
  1385. {
  1386. // Avoid premature overflow if we can:
  1387. t = z - 40;
  1388. if(t > tools::log_max_value<T>())
  1389. {
  1390. result = policies::raise_overflow_error<T>(function, 0, pol);
  1391. }
  1392. else
  1393. {
  1394. result *= exp(z - 40) / z;
  1395. if(result > tools::max_value<T>() / exp40)
  1396. {
  1397. result = policies::raise_overflow_error<T>(function, 0, pol);
  1398. }
  1399. else
  1400. {
  1401. result *= exp40;
  1402. }
  1403. }
  1404. }
  1405. result += z;
  1406. }
  1407. return result;
  1408. }
  1409. template <class T, class Policy, class tag>
  1410. struct expint_i_initializer
  1411. {
  1412. struct init
  1413. {
  1414. init()
  1415. {
  1416. do_init(tag());
  1417. }
  1418. static void do_init(const mpl::int_<0>&){}
  1419. static void do_init(const mpl::int_<53>&)
  1420. {
  1421. boost::math::expint(T(5));
  1422. boost::math::expint(T(7));
  1423. boost::math::expint(T(18));
  1424. boost::math::expint(T(38));
  1425. boost::math::expint(T(45));
  1426. }
  1427. static void do_init(const mpl::int_<64>&)
  1428. {
  1429. boost::math::expint(T(5));
  1430. boost::math::expint(T(7));
  1431. boost::math::expint(T(18));
  1432. boost::math::expint(T(38));
  1433. boost::math::expint(T(45));
  1434. }
  1435. static void do_init(const mpl::int_<113>&)
  1436. {
  1437. boost::math::expint(T(5));
  1438. boost::math::expint(T(7));
  1439. boost::math::expint(T(17));
  1440. boost::math::expint(T(25));
  1441. boost::math::expint(T(40));
  1442. boost::math::expint(T(50));
  1443. boost::math::expint(T(80));
  1444. boost::math::expint(T(200));
  1445. boost::math::expint(T(220));
  1446. }
  1447. void force_instantiate()const{}
  1448. };
  1449. static const init initializer;
  1450. static void force_instantiate()
  1451. {
  1452. initializer.force_instantiate();
  1453. }
  1454. };
  1455. template <class T, class Policy, class tag>
  1456. const typename expint_i_initializer<T, Policy, tag>::init expint_i_initializer<T, Policy, tag>::initializer;
  1457. template <class T, class Policy, class tag>
  1458. struct expint_1_initializer
  1459. {
  1460. struct init
  1461. {
  1462. init()
  1463. {
  1464. do_init(tag());
  1465. }
  1466. static void do_init(const mpl::int_<0>&){}
  1467. static void do_init(const mpl::int_<53>&)
  1468. {
  1469. boost::math::expint(1, T(0.5));
  1470. boost::math::expint(1, T(2));
  1471. }
  1472. static void do_init(const mpl::int_<64>&)
  1473. {
  1474. boost::math::expint(1, T(0.5));
  1475. boost::math::expint(1, T(2));
  1476. }
  1477. static void do_init(const mpl::int_<113>&)
  1478. {
  1479. boost::math::expint(1, T(0.5));
  1480. boost::math::expint(1, T(2));
  1481. boost::math::expint(1, T(6));
  1482. }
  1483. void force_instantiate()const{}
  1484. };
  1485. static const init initializer;
  1486. static void force_instantiate()
  1487. {
  1488. initializer.force_instantiate();
  1489. }
  1490. };
  1491. template <class T, class Policy, class tag>
  1492. const typename expint_1_initializer<T, Policy, tag>::init expint_1_initializer<T, Policy, tag>::initializer;
  1493. template <class T, class Policy>
  1494. inline typename tools::promote_args<T>::type
  1495. expint_forwarder(T z, const Policy& /*pol*/, mpl::true_ const&)
  1496. {
  1497. typedef typename tools::promote_args<T>::type result_type;
  1498. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1499. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1500. typedef typename policies::normalise<
  1501. Policy,
  1502. policies::promote_float<false>,
  1503. policies::promote_double<false>,
  1504. policies::discrete_quantile<>,
  1505. policies::assert_undefined<> >::type forwarding_policy;
  1506. typedef typename mpl::if_<
  1507. mpl::less_equal<precision_type, mpl::int_<0> >,
  1508. mpl::int_<0>,
  1509. typename mpl::if_<
  1510. mpl::less_equal<precision_type, mpl::int_<53> >,
  1511. mpl::int_<53>, // double
  1512. typename mpl::if_<
  1513. mpl::less_equal<precision_type, mpl::int_<64> >,
  1514. mpl::int_<64>, // 80-bit long double
  1515. typename mpl::if_<
  1516. mpl::less_equal<precision_type, mpl::int_<113> >,
  1517. mpl::int_<113>, // 128-bit long double
  1518. mpl::int_<0> // too many bits, use generic version.
  1519. >::type
  1520. >::type
  1521. >::type
  1522. >::type tag_type;
  1523. expint_i_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
  1524. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_i_imp(
  1525. static_cast<value_type>(z),
  1526. forwarding_policy(),
  1527. tag_type()), "boost::math::expint<%1%>(%1%)");
  1528. }
  1529. template <class T>
  1530. inline typename tools::promote_args<T>::type
  1531. expint_forwarder(unsigned n, T z, const mpl::false_&)
  1532. {
  1533. return boost::math::expint(n, z, policies::policy<>());
  1534. }
  1535. } // namespace detail
  1536. template <class T, class Policy>
  1537. inline typename tools::promote_args<T>::type
  1538. expint(unsigned n, T z, const Policy& /*pol*/)
  1539. {
  1540. typedef typename tools::promote_args<T>::type result_type;
  1541. typedef typename policies::evaluation<result_type, Policy>::type value_type;
  1542. typedef typename policies::precision<result_type, Policy>::type precision_type;
  1543. typedef typename policies::normalise<
  1544. Policy,
  1545. policies::promote_float<false>,
  1546. policies::promote_double<false>,
  1547. policies::discrete_quantile<>,
  1548. policies::assert_undefined<> >::type forwarding_policy;
  1549. typedef typename mpl::if_<
  1550. mpl::less_equal<precision_type, mpl::int_<0> >,
  1551. mpl::int_<0>,
  1552. typename mpl::if_<
  1553. mpl::less_equal<precision_type, mpl::int_<53> >,
  1554. mpl::int_<53>, // double
  1555. typename mpl::if_<
  1556. mpl::less_equal<precision_type, mpl::int_<64> >,
  1557. mpl::int_<64>, // 80-bit long double
  1558. typename mpl::if_<
  1559. mpl::less_equal<precision_type, mpl::int_<113> >,
  1560. mpl::int_<113>, // 128-bit long double
  1561. mpl::int_<0> // too many bits, use generic version.
  1562. >::type
  1563. >::type
  1564. >::type
  1565. >::type tag_type;
  1566. detail::expint_1_initializer<value_type, forwarding_policy, tag_type>::force_instantiate();
  1567. return policies::checked_narrowing_cast<result_type, forwarding_policy>(detail::expint_imp(
  1568. n,
  1569. static_cast<value_type>(z),
  1570. forwarding_policy(),
  1571. tag_type()), "boost::math::expint<%1%>(unsigned, %1%)");
  1572. }
  1573. template <class T, class U>
  1574. inline typename detail::expint_result<T, U>::type
  1575. expint(T const z, U const u)
  1576. {
  1577. typedef typename policies::is_policy<U>::type tag_type;
  1578. return detail::expint_forwarder(z, u, tag_type());
  1579. }
  1580. template <class T>
  1581. inline typename tools::promote_args<T>::type
  1582. expint(T z)
  1583. {
  1584. return expint(z, policies::policy<>());
  1585. }
  1586. }} // namespaces
  1587. #ifdef _MSC_VER
  1588. #pragma warning(pop)
  1589. #endif
  1590. #endif // BOOST_MATH_EXPINT_HPP