bessel_y0.hpp 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Use, modification and distribution are subject to the
  3. // Boost Software License, Version 1.0. (See accompanying file
  4. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  5. #ifndef BOOST_MATH_BESSEL_Y0_HPP
  6. #define BOOST_MATH_BESSEL_Y0_HPP
  7. #ifdef _MSC_VER
  8. #pragma once
  9. #pragma warning(push)
  10. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  11. #endif
  12. #include <boost/math/special_functions/detail/bessel_j0.hpp>
  13. #include <boost/math/constants/constants.hpp>
  14. #include <boost/math/tools/rational.hpp>
  15. #include <boost/math/tools/big_constant.hpp>
  16. #include <boost/math/policies/error_handling.hpp>
  17. #include <boost/assert.hpp>
  18. // Bessel function of the second kind of order zero
  19. // x <= 8, minimax rational approximations on root-bracketing intervals
  20. // x > 8, Hankel asymptotic expansion in Hart, Computer Approximations, 1968
  21. namespace boost { namespace math { namespace detail{
  22. template <typename T, typename Policy>
  23. T bessel_y0(T x, const Policy&);
  24. template <class T, class Policy>
  25. struct bessel_y0_initializer
  26. {
  27. struct init
  28. {
  29. init()
  30. {
  31. do_init();
  32. }
  33. static void do_init()
  34. {
  35. bessel_y0(T(1), Policy());
  36. }
  37. void force_instantiate()const{}
  38. };
  39. static const init initializer;
  40. static void force_instantiate()
  41. {
  42. initializer.force_instantiate();
  43. }
  44. };
  45. template <class T, class Policy>
  46. const typename bessel_y0_initializer<T, Policy>::init bessel_y0_initializer<T, Policy>::initializer;
  47. template <typename T, typename Policy>
  48. T bessel_y0(T x, const Policy& pol)
  49. {
  50. bessel_y0_initializer<T, Policy>::force_instantiate();
  51. static const T P1[] = {
  52. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0723538782003176831e+11)),
  53. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.3716255451260504098e+09)),
  54. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.0422274357376619816e+08)),
  55. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.1287548474401797963e+06)),
  56. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0102532948020907590e+04)),
  57. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8402381979244993524e+01)),
  58. };
  59. static const T Q1[] = {
  60. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.8873865738997033405e+11)),
  61. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.1617187777290363573e+09)),
  62. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.5662956624278251596e+07)),
  63. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.3889393209447253406e+05)),
  64. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.6475986689240190091e+02)),
  65. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  66. };
  67. static const T P2[] = {
  68. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2213976967566192242e+13)),
  69. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -5.5107435206722644429e+11)),
  70. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3600098638603061642e+10)),
  71. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -6.9590439394619619534e+08)),
  72. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.6905288611678631510e+06)),
  73. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.4566865832663635920e+04)),
  74. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.7427031242901594547e+01)),
  75. };
  76. static const T Q2[] = {
  77. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.3386146580707264428e+14)),
  78. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.4266824419412347550e+12)),
  79. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4015103849971240096e+10)),
  80. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.3960202770986831075e+08)),
  81. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.0669982352539552018e+05)),
  82. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.3030857612070288823e+02)),
  83. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  84. };
  85. static const T P3[] = {
  86. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.0728726905150210443e+15)),
  87. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.7016641869173237784e+14)),
  88. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2829912364088687306e+11)),
  89. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.9363051266772083678e+11)),
  90. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1958827170518100757e+09)),
  91. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.0085539923498211426e+07)),
  92. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1363534169313901632e+04)),
  93. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.7439661319197499338e+01)),
  94. };
  95. static const T Q3[] = {
  96. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4563724628846457519e+17)),
  97. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9272425569640309819e+15)),
  98. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2598377924042897629e+13)),
  99. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.6926121104209825246e+10)),
  100. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.4727219475672302327e+08)),
  101. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.3924739209768057030e+05)),
  102. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.7903362168128450017e+02)),
  103. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  104. };
  105. static const T PC[] = {
  106. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684302e+04)),
  107. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1345386639580765797e+04)),
  108. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1170523380864944322e+04)),
  109. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.4806486443249270347e+03)),
  110. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5376201909008354296e+02)),
  111. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.8961548424210455236e-01)),
  112. };
  113. static const T QC[] = {
  114. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.2779090197304684318e+04)),
  115. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 4.1370412495510416640e+04)),
  116. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.1215350561880115730e+04)),
  117. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.5028735138235608207e+03)),
  118. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.5711159858080893649e+02)),
  119. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  120. };
  121. static const T PS[] = {
  122. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.9226600200800094098e+01)),
  123. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.8591953644342993800e+02)),
  124. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.1183429920482737611e+02)),
  125. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -2.2300261666214198472e+01)),
  126. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -1.2441026745835638459e+00)),
  127. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, -8.8033303048680751817e-03)),
  128. };
  129. static const T QS[] = {
  130. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 5.7105024128512061905e+03)),
  131. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1951131543434613647e+04)),
  132. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.2642780169211018836e+03)),
  133. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.4887231232283756582e+03)),
  134. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 9.0593769594993125859e+01)),
  135. static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0)),
  136. };
  137. static const T x1 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 8.9357696627916752158e-01)),
  138. x2 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 3.9576784193148578684e+00)),
  139. x3 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 7.0860510603017726976e+00)),
  140. x11 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.280e+02)),
  141. x12 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 2.9519662791675215849e-03)),
  142. x21 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.0130e+03)),
  143. x22 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 6.4716931485786837568e-04)),
  144. x31 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.8140e+03)),
  145. x32 = static_cast<T>(BOOST_MATH_BIG_CONSTANT(T, 64, 1.1356030177269762362e-04))
  146. ;
  147. T value, factor, r, rc, rs;
  148. BOOST_MATH_STD_USING
  149. using namespace boost::math::tools;
  150. using namespace boost::math::constants;
  151. static const char* function = "boost::math::bessel_y0<%1%>(%1%,%1%)";
  152. if (x < 0)
  153. {
  154. return policies::raise_domain_error<T>(function,
  155. "Got x = %1% but x must be non-negative, complex result not supported.", x, pol);
  156. }
  157. if (x == 0)
  158. {
  159. return -policies::raise_overflow_error<T>(function, 0, pol);
  160. }
  161. if (x <= 3) // x in (0, 3]
  162. {
  163. T y = x * x;
  164. T z = 2 * log(x/x1) * bessel_j0(x) / pi<T>();
  165. r = evaluate_rational(P1, Q1, y);
  166. factor = (x + x1) * ((x - x11/256) - x12);
  167. value = z + factor * r;
  168. }
  169. else if (x <= 5.5f) // x in (3, 5.5]
  170. {
  171. T y = x * x;
  172. T z = 2 * log(x/x2) * bessel_j0(x) / pi<T>();
  173. r = evaluate_rational(P2, Q2, y);
  174. factor = (x + x2) * ((x - x21/256) - x22);
  175. value = z + factor * r;
  176. }
  177. else if (x <= 8) // x in (5.5, 8]
  178. {
  179. T y = x * x;
  180. T z = 2 * log(x/x3) * bessel_j0(x) / pi<T>();
  181. r = evaluate_rational(P3, Q3, y);
  182. factor = (x + x3) * ((x - x31/256) - x32);
  183. value = z + factor * r;
  184. }
  185. else // x in (8, \infty)
  186. {
  187. T y = 8 / x;
  188. T y2 = y * y;
  189. rc = evaluate_rational(PC, QC, y2);
  190. rs = evaluate_rational(PS, QS, y2);
  191. factor = constants::one_div_root_pi<T>() / sqrt(x);
  192. //
  193. // The following code is really just:
  194. //
  195. // T z = x - 0.25f * pi<T>();
  196. // value = factor * (rc * sin(z) + y * rs * cos(z));
  197. //
  198. // But using the sin/cos addition formulae and constant values for
  199. // sin/cos of PI/4 which then cancel part of the "factor" term as they're all
  200. // 1 / sqrt(2):
  201. //
  202. T sx = sin(x);
  203. T cx = cos(x);
  204. value = factor * (rc * (sx - cx) + y * rs * (cx + sx));
  205. }
  206. return value;
  207. }
  208. }}} // namespaces
  209. #ifdef _MSC_VER
  210. #pragma warning(pop)
  211. #endif
  212. #endif // BOOST_MATH_BESSEL_Y0_HPP