bessel_k1.hpp 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Copyright (c) 2017 John Maddock
  3. // Use, modification and distribution are subject to the
  4. // Boost Software License, Version 1.0. (See accompanying file
  5. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  6. #ifndef BOOST_MATH_BESSEL_K1_HPP
  7. #define BOOST_MATH_BESSEL_K1_HPP
  8. #ifdef _MSC_VER
  9. #pragma once
  10. #pragma warning(push)
  11. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  12. #endif
  13. #include <boost/math/tools/rational.hpp>
  14. #include <boost/math/tools/big_constant.hpp>
  15. #include <boost/math/policies/error_handling.hpp>
  16. #include <boost/assert.hpp>
  17. // Modified Bessel function of the second kind of order zero
  18. // minimax rational approximations on intervals, see
  19. // Russon and Blair, Chalk River Report AECL-3461, 1969,
  20. // as revised by Pavel Holoborodko in "Rational Approximations
  21. // for the Modified Bessel Function of the Second Kind - K0(x)
  22. // for Computations with Double Precision", see
  23. // http://www.advanpix.com/2016/01/05/rational-approximations-for-the-modified-bessel-function-of-the-second-kind-k1-for-computations-with-double-precision/
  24. //
  25. // The actual coefficients used are our own derivation (by JM)
  26. // since we extend to both greater and lesser precision than the
  27. // references above. We can also improve performance WRT to
  28. // Holoborodko without loss of precision.
  29. namespace boost { namespace math { namespace detail{
  30. template <typename T>
  31. T bessel_k1(const T& x);
  32. template <class T, class tag>
  33. struct bessel_k1_initializer
  34. {
  35. struct init
  36. {
  37. init()
  38. {
  39. do_init(tag());
  40. }
  41. static void do_init(const mpl::int_<113>&)
  42. {
  43. bessel_k1(T(0.5));
  44. bessel_k1(T(2));
  45. bessel_k1(T(6));
  46. }
  47. static void do_init(const mpl::int_<64>&)
  48. {
  49. bessel_k1(T(0.5));
  50. bessel_k1(T(6));
  51. }
  52. template <class U>
  53. static void do_init(const U&) {}
  54. void force_instantiate()const {}
  55. };
  56. static const init initializer;
  57. static void force_instantiate()
  58. {
  59. initializer.force_instantiate();
  60. }
  61. };
  62. template <class T, class tag>
  63. const typename bessel_k1_initializer<T, tag>::init bessel_k1_initializer<T, tag>::initializer;
  64. template <typename T, int N>
  65. inline T bessel_k1_imp(const T& x, const mpl::int_<N>&)
  66. {
  67. BOOST_ASSERT(0);
  68. return 0;
  69. }
  70. template <typename T>
  71. T bessel_k1_imp(const T& x, const mpl::int_<24>&)
  72. {
  73. BOOST_MATH_STD_USING
  74. if(x <= 1)
  75. {
  76. // Maximum Deviation Found: 3.090e-12
  77. // Expected Error Term : -3.053e-12
  78. // Maximum Relative Change in Control Points : 4.927e-02
  79. // Max Error found at float precision = Poly : 7.918347e-10
  80. static const T Y = 8.695471287e-02f;
  81. static const T P[] =
  82. {
  83. -3.621379531e-03f,
  84. 7.131781976e-03f,
  85. -1.535278300e-05f
  86. };
  87. static const T Q[] =
  88. {
  89. 1.000000000e+00f,
  90. -5.173102701e-02f,
  91. 9.203530671e-04f
  92. };
  93. T a = x * x / 4;
  94. a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2;
  95. // Maximum Deviation Found: 3.556e-08
  96. // Expected Error Term : -3.541e-08
  97. // Maximum Relative Change in Control Points : 8.203e-02
  98. static const T P2[] =
  99. {
  100. -3.079657469e-01f,
  101. -8.537108913e-02f,
  102. -4.640275408e-03f,
  103. -1.156442414e-04f
  104. };
  105. return tools::evaluate_polynomial(P2, T(x * x)) * x + 1 / x + log(x) * a;
  106. }
  107. else
  108. {
  109. // Maximum Deviation Found: 3.369e-08
  110. // Expected Error Term : -3.227e-08
  111. // Maximum Relative Change in Control Points : 9.917e-02
  112. // Max Error found at float precision = Poly : 6.084411e-08
  113. static const T Y = 1.450342178f;
  114. static const T P[] =
  115. {
  116. -1.970280088e-01f,
  117. 2.188747807e-02f,
  118. 7.270394756e-01f,
  119. 2.490678196e-01f
  120. };
  121. static const T Q[] =
  122. {
  123. 1.000000000e+00f,
  124. 2.274292882e+00f,
  125. 9.904984851e-01f,
  126. 4.585534549e-02f
  127. };
  128. if(x < tools::log_max_value<T>())
  129. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  130. else
  131. {
  132. T ex = exp(-x / 2);
  133. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  134. }
  135. }
  136. }
  137. template <typename T>
  138. T bessel_k1_imp(const T& x, const mpl::int_<53>&)
  139. {
  140. BOOST_MATH_STD_USING
  141. if(x <= 1)
  142. {
  143. // Maximum Deviation Found: 1.922e-17
  144. // Expected Error Term : 1.921e-17
  145. // Maximum Relative Change in Control Points : 5.287e-03
  146. // Max Error found at double precision = Poly : 2.004747e-17
  147. static const T Y = 8.69547128677368164e-02f;
  148. static const T P[] =
  149. {
  150. -3.62137953440350228e-03,
  151. 7.11842087490330300e-03,
  152. 1.00302560256614306e-05,
  153. 1.77231085381040811e-06
  154. };
  155. static const T Q[] =
  156. {
  157. 1.00000000000000000e+00,
  158. -4.80414794429043831e-02,
  159. 9.85972641934416525e-04,
  160. -8.91196859397070326e-06
  161. };
  162. T a = x * x / 4;
  163. a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2;
  164. // Maximum Deviation Found: 4.053e-17
  165. // Expected Error Term : -4.053e-17
  166. // Maximum Relative Change in Control Points : 3.103e-04
  167. // Max Error found at double precision = Poly : 1.246698e-16
  168. static const T P2[] =
  169. {
  170. -3.07965757829206184e-01,
  171. -7.80929703673074907e-02,
  172. -2.70619343754051620e-03,
  173. -2.49549522229072008e-05
  174. };
  175. static const T Q2[] =
  176. {
  177. 1.00000000000000000e+00,
  178. -2.36316836412163098e-02,
  179. 2.64524577525962719e-04,
  180. -1.49749618004162787e-06
  181. };
  182. return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a;
  183. }
  184. else
  185. {
  186. // Maximum Deviation Found: 8.883e-17
  187. // Expected Error Term : -1.641e-17
  188. // Maximum Relative Change in Control Points : 2.786e-01
  189. // Max Error found at double precision = Poly : 1.258798e-16
  190. static const T Y = 1.45034217834472656f;
  191. static const T P[] =
  192. {
  193. -1.97028041029226295e-01,
  194. -2.32408961548087617e+00,
  195. -7.98269784507699938e+00,
  196. -2.39968410774221632e+00,
  197. 3.28314043780858713e+01,
  198. 5.67713761158496058e+01,
  199. 3.30907788466509823e+01,
  200. 6.62582288933739787e+00,
  201. 3.08851840645286691e-01
  202. };
  203. static const T Q[] =
  204. {
  205. 1.00000000000000000e+00,
  206. 1.41811409298826118e+01,
  207. 7.35979466317556420e+01,
  208. 1.77821793937080859e+02,
  209. 2.11014501598705982e+02,
  210. 1.19425262951064454e+02,
  211. 2.88448064302447607e+01,
  212. 2.27912927104139732e+00,
  213. 2.50358186953478678e-02
  214. };
  215. if(x < tools::log_max_value<T>())
  216. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  217. else
  218. {
  219. T ex = exp(-x / 2);
  220. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  221. }
  222. }
  223. }
  224. template <typename T>
  225. T bessel_k1_imp(const T& x, const mpl::int_<64>&)
  226. {
  227. BOOST_MATH_STD_USING
  228. if(x <= 1)
  229. {
  230. // Maximum Deviation Found: 5.549e-23
  231. // Expected Error Term : -5.548e-23
  232. // Maximum Relative Change in Control Points : 2.002e-03
  233. // Max Error found at float80 precision = Poly : 9.352785e-22
  234. static const T Y = 8.695471286773681640625e-02f;
  235. static const T P[] =
  236. {
  237. BOOST_MATH_BIG_CONSTANT(T, 64, -3.621379534403483072861e-03),
  238. BOOST_MATH_BIG_CONSTANT(T, 64, 7.102135866103952705932e-03),
  239. BOOST_MATH_BIG_CONSTANT(T, 64, 4.167545240236717601167e-05),
  240. BOOST_MATH_BIG_CONSTANT(T, 64, 2.537484002571894870830e-06),
  241. BOOST_MATH_BIG_CONSTANT(T, 64, 6.603228256820000135990e-09)
  242. };
  243. static const T Q[] =
  244. {
  245. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  246. BOOST_MATH_BIG_CONSTANT(T, 64, -4.354457194045068370363e-02),
  247. BOOST_MATH_BIG_CONSTANT(T, 64, 8.709137201220209072820e-04),
  248. BOOST_MATH_BIG_CONSTANT(T, 64, -9.676151796359590545143e-06),
  249. BOOST_MATH_BIG_CONSTANT(T, 64, 5.162715192766245311659e-08)
  250. };
  251. T a = x * x / 4;
  252. a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2;
  253. // Maximum Deviation Found: 1.995e-23
  254. // Expected Error Term : 1.995e-23
  255. // Maximum Relative Change in Control Points : 8.174e-04
  256. // Max Error found at float80 precision = Poly : 4.137325e-20
  257. static const T P2[] =
  258. {
  259. BOOST_MATH_BIG_CONSTANT(T, 64, -3.079657578292062244054e-01),
  260. BOOST_MATH_BIG_CONSTANT(T, 64, -7.963049154965966503231e-02),
  261. BOOST_MATH_BIG_CONSTANT(T, 64, -3.103277523735639924895e-03),
  262. BOOST_MATH_BIG_CONSTANT(T, 64, -4.023052834702215699504e-05),
  263. BOOST_MATH_BIG_CONSTANT(T, 64, -1.719459155018493821839e-07)
  264. };
  265. static const T Q2[] =
  266. {
  267. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  268. BOOST_MATH_BIG_CONSTANT(T, 64, -1.863917670410152669768e-02),
  269. BOOST_MATH_BIG_CONSTANT(T, 64, 1.699367098849735298090e-04),
  270. BOOST_MATH_BIG_CONSTANT(T, 64, -9.309358790546076298429e-07),
  271. BOOST_MATH_BIG_CONSTANT(T, 64, 2.708893480271612711933e-09)
  272. };
  273. return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a;
  274. }
  275. else
  276. {
  277. // Maximum Deviation Found: 9.785e-20
  278. // Expected Error Term : -3.302e-21
  279. // Maximum Relative Change in Control Points : 3.432e-01
  280. // Max Error found at float80 precision = Poly : 1.083755e-19
  281. static const T Y = 1.450342178344726562500e+00f;
  282. static const T P[] =
  283. {
  284. BOOST_MATH_BIG_CONSTANT(T, 64, -1.970280410292263112917e-01),
  285. BOOST_MATH_BIG_CONSTANT(T, 64, -4.058564803062959169322e+00),
  286. BOOST_MATH_BIG_CONSTANT(T, 64, -3.036658174194917777473e+01),
  287. BOOST_MATH_BIG_CONSTANT(T, 64, -9.576825392332820142173e+01),
  288. BOOST_MATH_BIG_CONSTANT(T, 64, -6.706969489248020941949e+01),
  289. BOOST_MATH_BIG_CONSTANT(T, 64, 3.264572499406168221382e+02),
  290. BOOST_MATH_BIG_CONSTANT(T, 64, 8.584972047303151034100e+02),
  291. BOOST_MATH_BIG_CONSTANT(T, 64, 8.422082733280017909550e+02),
  292. BOOST_MATH_BIG_CONSTANT(T, 64, 3.738005441471368178383e+02),
  293. BOOST_MATH_BIG_CONSTANT(T, 64, 7.016938390144121276609e+01),
  294. BOOST_MATH_BIG_CONSTANT(T, 64, 4.319614662598089438939e+00),
  295. BOOST_MATH_BIG_CONSTANT(T, 64, 3.710715864316521856193e-02)
  296. };
  297. static const T Q[] =
  298. {
  299. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  300. BOOST_MATH_BIG_CONSTANT(T, 64, 2.298433045824439052398e+01),
  301. BOOST_MATH_BIG_CONSTANT(T, 64, 2.082047745067709230037e+02),
  302. BOOST_MATH_BIG_CONSTANT(T, 64, 9.662367854250262046592e+02),
  303. BOOST_MATH_BIG_CONSTANT(T, 64, 2.504148628460454004686e+03),
  304. BOOST_MATH_BIG_CONSTANT(T, 64, 3.712730364911389908905e+03),
  305. BOOST_MATH_BIG_CONSTANT(T, 64, 3.108002081150068641112e+03),
  306. BOOST_MATH_BIG_CONSTANT(T, 64, 1.400149940532448553143e+03),
  307. BOOST_MATH_BIG_CONSTANT(T, 64, 3.083303048095846226299e+02),
  308. BOOST_MATH_BIG_CONSTANT(T, 64, 2.748706060530351833346e+01),
  309. BOOST_MATH_BIG_CONSTANT(T, 64, 6.321900849331506946977e-01),
  310. };
  311. if(x < tools::log_max_value<T>())
  312. return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  313. else
  314. {
  315. T ex = exp(-x / 2);
  316. return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  317. }
  318. }
  319. }
  320. template <typename T>
  321. T bessel_k1_imp(const T& x, const mpl::int_<113>&)
  322. {
  323. BOOST_MATH_STD_USING
  324. if(x <= 1)
  325. {
  326. // Maximum Deviation Found: 7.120e-35
  327. // Expected Error Term : -7.119e-35
  328. // Maximum Relative Change in Control Points : 1.207e-03
  329. // Max Error found at float128 precision = Poly : 7.143688e-35
  330. static const T Y = 8.695471286773681640625000000000000000e-02f;
  331. static const T P[] =
  332. {
  333. BOOST_MATH_BIG_CONSTANT(T, 113, -3.621379534403483072916666666666595475e-03),
  334. BOOST_MATH_BIG_CONSTANT(T, 113, 7.074117676930975433219826471336547627e-03),
  335. BOOST_MATH_BIG_CONSTANT(T, 113, 9.631337631362776369069668419033041661e-05),
  336. BOOST_MATH_BIG_CONSTANT(T, 113, 3.468935967870048731821071646104412775e-06),
  337. BOOST_MATH_BIG_CONSTANT(T, 113, 2.956705020559599861444492614737168261e-08),
  338. BOOST_MATH_BIG_CONSTANT(T, 113, 2.347140307321161346703214099534250263e-10),
  339. BOOST_MATH_BIG_CONSTANT(T, 113, 5.569608494081482873946791086435679661e-13)
  340. };
  341. static const T Q[] =
  342. {
  343. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  344. BOOST_MATH_BIG_CONSTANT(T, 113, -3.580768910152105375615558920428350204e-02),
  345. BOOST_MATH_BIG_CONSTANT(T, 113, 6.197467671701485365363068445534557369e-04),
  346. BOOST_MATH_BIG_CONSTANT(T, 113, -6.707466533308630411966030561446666237e-06),
  347. BOOST_MATH_BIG_CONSTANT(T, 113, 4.846687802282250112624373388491123527e-08),
  348. BOOST_MATH_BIG_CONSTANT(T, 113, -2.248493131151981569517383040323900343e-10),
  349. BOOST_MATH_BIG_CONSTANT(T, 113, 5.319279786372775264555728921709381080e-13)
  350. };
  351. T a = x * x / 4;
  352. a = ((tools::evaluate_rational(P, Q, a) + Y) * a * a + a / 2 + 1) * x / 2;
  353. // Maximum Deviation Found: 4.473e-37
  354. // Expected Error Term : 4.473e-37
  355. // Maximum Relative Change in Control Points : 8.550e-04
  356. // Max Error found at float128 precision = Poly : 8.167701e-35
  357. static const T P2[] =
  358. {
  359. BOOST_MATH_BIG_CONSTANT(T, 113, -3.079657578292062244053600156878870690e-01),
  360. BOOST_MATH_BIG_CONSTANT(T, 113, -8.133183745732467770755578848987414875e-02),
  361. BOOST_MATH_BIG_CONSTANT(T, 113, -3.548968792764174773125420229299431951e-03),
  362. BOOST_MATH_BIG_CONSTANT(T, 113, -5.886125468718182876076972186152445490e-05),
  363. BOOST_MATH_BIG_CONSTANT(T, 113, -4.506712111733707245745396404449639865e-07),
  364. BOOST_MATH_BIG_CONSTANT(T, 113, -1.632502325880313239698965376754406011e-09),
  365. BOOST_MATH_BIG_CONSTANT(T, 113, -2.311973065898784812266544485665624227e-12)
  366. };
  367. static const T Q2[] =
  368. {
  369. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  370. BOOST_MATH_BIG_CONSTANT(T, 113, -1.311471216733781016657962995723287450e-02),
  371. BOOST_MATH_BIG_CONSTANT(T, 113, 8.571876054797365417068164018709472969e-05),
  372. BOOST_MATH_BIG_CONSTANT(T, 113, -3.630181215268238731442496851497901293e-07),
  373. BOOST_MATH_BIG_CONSTANT(T, 113, 1.070176111227805048604885986867484807e-09),
  374. BOOST_MATH_BIG_CONSTANT(T, 113, -2.129046580769872602793220056461084761e-12),
  375. BOOST_MATH_BIG_CONSTANT(T, 113, 2.294906469421390890762001971790074432e-15)
  376. };
  377. return tools::evaluate_rational(P2, Q2, T(x * x)) * x + 1 / x + log(x) * a;
  378. }
  379. else if(x < 4)
  380. {
  381. // Max error in interpolated form: 5.307e-37
  382. // Max Error found at float128 precision = Poly: 7.087862e-35
  383. static const T Y = 1.5023040771484375f;
  384. static const T P[] =
  385. {
  386. BOOST_MATH_BIG_CONSTANT(T, 113, -2.489899398329369710528254347931380044e-01),
  387. BOOST_MATH_BIG_CONSTANT(T, 113, -6.819080211203854781858815596508456873e+00),
  388. BOOST_MATH_BIG_CONSTANT(T, 113, -7.599915699069767382647695624952723034e+01),
  389. BOOST_MATH_BIG_CONSTANT(T, 113, -4.450211910821295507926582231071300718e+02),
  390. BOOST_MATH_BIG_CONSTANT(T, 113, -1.451374687870925175794150513723956533e+03),
  391. BOOST_MATH_BIG_CONSTANT(T, 113, -2.405805746895098802803503988539098226e+03),
  392. BOOST_MATH_BIG_CONSTANT(T, 113, -5.638808326778389656403861103277220518e+02),
  393. BOOST_MATH_BIG_CONSTANT(T, 113, 5.513958744081268456191778822780865708e+03),
  394. BOOST_MATH_BIG_CONSTANT(T, 113, 1.121301640926540743072258116122834804e+04),
  395. BOOST_MATH_BIG_CONSTANT(T, 113, 1.080094900175649541266613109971296190e+04),
  396. BOOST_MATH_BIG_CONSTANT(T, 113, 5.896531083639613332407534434915552429e+03),
  397. BOOST_MATH_BIG_CONSTANT(T, 113, 1.856602122319645694042555107114028437e+03),
  398. BOOST_MATH_BIG_CONSTANT(T, 113, 3.237121918853145421414003823957537419e+02),
  399. BOOST_MATH_BIG_CONSTANT(T, 113, 2.842072954561323076230238664623893504e+01),
  400. BOOST_MATH_BIG_CONSTANT(T, 113, 1.039705646510167437971862966128055524e+00),
  401. BOOST_MATH_BIG_CONSTANT(T, 113, 1.008418100718254816100425022904039530e-02)
  402. };
  403. static const T Q[] =
  404. {
  405. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  406. BOOST_MATH_BIG_CONSTANT(T, 113, 2.927456835239137986889227412815459529e+01),
  407. BOOST_MATH_BIG_CONSTANT(T, 113, 3.598985593265577043711382994516531273e+02),
  408. BOOST_MATH_BIG_CONSTANT(T, 113, 2.449897377085510281395819892689690579e+03),
  409. BOOST_MATH_BIG_CONSTANT(T, 113, 1.025555887684561913263090023158085327e+04),
  410. BOOST_MATH_BIG_CONSTANT(T, 113, 2.774140447181062463181892531100679195e+04),
  411. BOOST_MATH_BIG_CONSTANT(T, 113, 4.962055507843204417243602332246120418e+04),
  412. BOOST_MATH_BIG_CONSTANT(T, 113, 5.908269326976180183216954452196772931e+04),
  413. BOOST_MATH_BIG_CONSTANT(T, 113, 4.655160454422016855911700790722577942e+04),
  414. BOOST_MATH_BIG_CONSTANT(T, 113, 2.383586885019548163464418964577684608e+04),
  415. BOOST_MATH_BIG_CONSTANT(T, 113, 7.679920375586960324298491662159976419e+03),
  416. BOOST_MATH_BIG_CONSTANT(T, 113, 1.478586421028842906987799049804565008e+03),
  417. BOOST_MATH_BIG_CONSTANT(T, 113, 1.565384974896746094224942654383537090e+02),
  418. BOOST_MATH_BIG_CONSTANT(T, 113, 7.902617937084010911005732488607114511e+00),
  419. BOOST_MATH_BIG_CONSTANT(T, 113, 1.429293010387921526110949911029094926e-01),
  420. BOOST_MATH_BIG_CONSTANT(T, 113, 3.880342607911083143560111853491047663e-04)
  421. };
  422. return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  423. }
  424. else
  425. {
  426. // Maximum Deviation Found: 4.359e-37
  427. // Expected Error Term : -6.565e-40
  428. // Maximum Relative Change in Control Points : 1.880e-01
  429. // Max Error found at float128 precision = Poly : 2.943572e-35
  430. static const T Y = 1.308816909790039062500000000000000000f;
  431. static const T P[] =
  432. {
  433. BOOST_MATH_BIG_CONSTANT(T, 113, -5.550277247453881129211735759447737350e-02),
  434. BOOST_MATH_BIG_CONSTANT(T, 113, -3.485883080219574328217554864956175929e+00),
  435. BOOST_MATH_BIG_CONSTANT(T, 113, -8.903760658131484239300875153154881958e+01),
  436. BOOST_MATH_BIG_CONSTANT(T, 113, -1.144813672213626237418235110712293337e+03),
  437. BOOST_MATH_BIG_CONSTANT(T, 113, -6.498400501156131446691826557494158173e+03),
  438. BOOST_MATH_BIG_CONSTANT(T, 113, 1.573531831870363502604119835922166116e+04),
  439. BOOST_MATH_BIG_CONSTANT(T, 113, 5.417416550054632009958262596048841154e+05),
  440. BOOST_MATH_BIG_CONSTANT(T, 113, 4.271266450613557412825896604269130661e+06),
  441. BOOST_MATH_BIG_CONSTANT(T, 113, 1.898386013314389952534433455681107783e+07),
  442. BOOST_MATH_BIG_CONSTANT(T, 113, 5.353798784656436259250791761023512750e+07),
  443. BOOST_MATH_BIG_CONSTANT(T, 113, 9.839619195427352438957774052763490067e+07),
  444. BOOST_MATH_BIG_CONSTANT(T, 113, 1.169246368651532232388152442538005637e+08),
  445. BOOST_MATH_BIG_CONSTANT(T, 113, 8.696368884166831199967845883371116431e+07),
  446. BOOST_MATH_BIG_CONSTANT(T, 113, 3.810226630422736458064005843327500169e+07),
  447. BOOST_MATH_BIG_CONSTANT(T, 113, 8.854996610560406127438950635716757614e+06),
  448. BOOST_MATH_BIG_CONSTANT(T, 113, 8.981057433937398731355768088809437625e+05),
  449. BOOST_MATH_BIG_CONSTANT(T, 113, 2.519440069856232098711793483639792952e+04)
  450. };
  451. static const T Q[] =
  452. {
  453. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  454. BOOST_MATH_BIG_CONSTANT(T, 113, 7.127348248283623146544565916604103560e+01),
  455. BOOST_MATH_BIG_CONSTANT(T, 113, 2.205092684176906740104488180754982065e+03),
  456. BOOST_MATH_BIG_CONSTANT(T, 113, 3.911249195069050636298346469740075758e+04),
  457. BOOST_MATH_BIG_CONSTANT(T, 113, 4.426103406579046249654548481377792614e+05),
  458. BOOST_MATH_BIG_CONSTANT(T, 113, 3.365861555422488771286500241966208541e+06),
  459. BOOST_MATH_BIG_CONSTANT(T, 113, 1.765377714160383676864913709252529840e+07),
  460. BOOST_MATH_BIG_CONSTANT(T, 113, 6.453822726931857253365138260720815246e+07),
  461. BOOST_MATH_BIG_CONSTANT(T, 113, 1.643207885048369990391975749439783892e+08),
  462. BOOST_MATH_BIG_CONSTANT(T, 113, 2.882540678243694621895816336640877878e+08),
  463. BOOST_MATH_BIG_CONSTANT(T, 113, 3.410120808992380266174106812005338148e+08),
  464. BOOST_MATH_BIG_CONSTANT(T, 113, 2.628138016559335882019310900426773027e+08),
  465. BOOST_MATH_BIG_CONSTANT(T, 113, 1.250794693811010646965360198541047961e+08),
  466. BOOST_MATH_BIG_CONSTANT(T, 113, 3.378723408195485594610593014072950078e+07),
  467. BOOST_MATH_BIG_CONSTANT(T, 113, 4.488253856312453816451380319061865560e+06),
  468. BOOST_MATH_BIG_CONSTANT(T, 113, 2.202167197882689873967723350537104582e+05),
  469. BOOST_MATH_BIG_CONSTANT(T, 113, 1.673233230356966539460728211412989843e+03)
  470. };
  471. if(x < tools::log_max_value<T>())
  472. return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  473. else
  474. {
  475. T ex = exp(-x / 2);
  476. return ((tools::evaluate_polynomial(P, T(1 / x)) / tools::evaluate_polynomial(Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  477. }
  478. }
  479. }
  480. template <typename T>
  481. T bessel_k1_imp(const T& x, const mpl::int_<0>&)
  482. {
  483. if(boost::math::tools::digits<T>() <= 24)
  484. return bessel_k1_imp(x, mpl::int_<24>());
  485. else if(boost::math::tools::digits<T>() <= 53)
  486. return bessel_k1_imp(x, mpl::int_<53>());
  487. else if(boost::math::tools::digits<T>() <= 64)
  488. return bessel_k1_imp(x, mpl::int_<64>());
  489. else if(boost::math::tools::digits<T>() <= 113)
  490. return bessel_k1_imp(x, mpl::int_<113>());
  491. BOOST_ASSERT(0);
  492. return 0;
  493. }
  494. template <typename T>
  495. inline T bessel_k1(const T& x)
  496. {
  497. typedef mpl::int_<
  498. ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ?
  499. 0 :
  500. std::numeric_limits<T>::digits <= 24 ?
  501. 24 :
  502. std::numeric_limits<T>::digits <= 53 ?
  503. 53 :
  504. std::numeric_limits<T>::digits <= 64 ?
  505. 64 :
  506. std::numeric_limits<T>::digits <= 113 ?
  507. 113 : -1
  508. > tag_type;
  509. bessel_k1_initializer<T, tag_type>::force_instantiate();
  510. return bessel_k1_imp(x, tag_type());
  511. }
  512. }}} // namespaces
  513. #ifdef _MSC_VER
  514. #pragma warning(pop)
  515. #endif
  516. #endif // BOOST_MATH_BESSEL_K1_HPP