bessel_k0.hpp 21 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510
  1. // Copyright (c) 2006 Xiaogang Zhang
  2. // Copyright (c) 2017 John Maddock
  3. // Use, modification and distribution are subject to the
  4. // Boost Software License, Version 1.0. (See accompanying file
  5. // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
  6. #ifndef BOOST_MATH_BESSEL_K0_HPP
  7. #define BOOST_MATH_BESSEL_K0_HPP
  8. #ifdef _MSC_VER
  9. #pragma once
  10. #pragma warning(push)
  11. #pragma warning(disable:4702) // Unreachable code (release mode only warning)
  12. #endif
  13. #include <boost/math/tools/rational.hpp>
  14. #include <boost/math/tools/big_constant.hpp>
  15. #include <boost/math/policies/error_handling.hpp>
  16. #include <boost/assert.hpp>
  17. // Modified Bessel function of the second kind of order zero
  18. // minimax rational approximations on intervals, see
  19. // Russon and Blair, Chalk River Report AECL-3461, 1969,
  20. // as revised by Pavel Holoborodko in "Rational Approximations
  21. // for the Modified Bessel Function of the Second Kind - K0(x)
  22. // for Computations with Double Precision", see
  23. // http://www.advanpix.com/2015/11/25/rational-approximations-for-the-modified-bessel-function-of-the-second-kind-k0-for-computations-with-double-precision/
  24. //
  25. // The actual coefficients used are our own derivation (by JM)
  26. // since we extend to both greater and lesser precision than the
  27. // references above. We can also improve performance WRT to
  28. // Holoborodko without loss of precision.
  29. namespace boost { namespace math { namespace detail{
  30. template <typename T>
  31. T bessel_k0(const T& x);
  32. template <class T, class tag>
  33. struct bessel_k0_initializer
  34. {
  35. struct init
  36. {
  37. init()
  38. {
  39. do_init(tag());
  40. }
  41. static void do_init(const mpl::int_<113>&)
  42. {
  43. bessel_k0(T(0.5));
  44. bessel_k0(T(1.5));
  45. }
  46. static void do_init(const mpl::int_<64>&)
  47. {
  48. bessel_k0(T(0.5));
  49. bessel_k0(T(1.5));
  50. }
  51. template <class U>
  52. static void do_init(const U&){}
  53. void force_instantiate()const{}
  54. };
  55. static const init initializer;
  56. static void force_instantiate()
  57. {
  58. initializer.force_instantiate();
  59. }
  60. };
  61. template <class T, class tag>
  62. const typename bessel_k0_initializer<T, tag>::init bessel_k0_initializer<T, tag>::initializer;
  63. template <typename T, int N>
  64. T bessel_k0_imp(const T& x, const mpl::int_<N>&)
  65. {
  66. BOOST_ASSERT(0);
  67. return 0;
  68. }
  69. template <typename T>
  70. T bessel_k0_imp(const T& x, const mpl::int_<24>&)
  71. {
  72. BOOST_MATH_STD_USING
  73. if(x <= 1)
  74. {
  75. // Maximum Deviation Found : 2.358e-09
  76. // Expected Error Term : -2.358e-09
  77. // Maximum Relative Change in Control Points : 9.552e-02
  78. // Max Error found at float precision = Poly : 4.448220e-08
  79. static const T Y = 1.137250900268554688f;
  80. static const T P[] =
  81. {
  82. -1.372508979104259711e-01f,
  83. 2.622545986273687617e-01f,
  84. 5.047103728247919836e-03f
  85. };
  86. static const T Q[] =
  87. {
  88. 1.000000000000000000e+00f,
  89. -8.928694018000029415e-02f,
  90. 2.985980684180969241e-03f
  91. };
  92. T a = x * x / 4;
  93. a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1;
  94. // Maximum Deviation Found: 1.346e-09
  95. // Expected Error Term : -1.343e-09
  96. // Maximum Relative Change in Control Points : 2.405e-02
  97. // Max Error found at float precision = Poly : 1.354814e-07
  98. static const T P2[] = {
  99. 1.159315158e-01f,
  100. 2.789828686e-01f,
  101. 2.524902861e-02f,
  102. 8.457241514e-04f,
  103. 1.530051997e-05f
  104. };
  105. return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
  106. }
  107. else
  108. {
  109. // Maximum Deviation Found: 1.587e-08
  110. // Expected Error Term : 1.531e-08
  111. // Maximum Relative Change in Control Points : 9.064e-02
  112. // Max Error found at float precision = Poly : 5.065020e-08
  113. static const T P[] =
  114. {
  115. 2.533141220e-01,
  116. 5.221502603e-01,
  117. 6.380180669e-02,
  118. -5.934976547e-02
  119. };
  120. static const T Q[] =
  121. {
  122. 1.000000000e+00,
  123. 2.679722431e+00,
  124. 1.561635813e+00,
  125. 1.573660661e-01
  126. };
  127. if(x < tools::log_max_value<T>())
  128. return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * exp(-x) / sqrt(x));
  129. else
  130. {
  131. T ex = exp(-x / 2);
  132. return ((tools::evaluate_rational(P, Q, T(1 / x)) + 1) * ex / sqrt(x)) * ex;
  133. }
  134. }
  135. }
  136. template <typename T>
  137. T bessel_k0_imp(const T& x, const mpl::int_<53>&)
  138. {
  139. BOOST_MATH_STD_USING
  140. if(x <= 1)
  141. {
  142. // Maximum Deviation Found: 6.077e-17
  143. // Expected Error Term : -6.077e-17
  144. // Maximum Relative Change in Control Points : 7.797e-02
  145. // Max Error found at double precision = Poly : 1.003156e-16
  146. static const T Y = 1.137250900268554688;
  147. static const T P[] =
  148. {
  149. -1.372509002685546267e-01,
  150. 2.574916117833312855e-01,
  151. 1.395474602146869316e-02,
  152. 5.445476986653926759e-04,
  153. 7.125159422136622118e-06
  154. };
  155. static const T Q[] =
  156. {
  157. 1.000000000000000000e+00,
  158. -5.458333438017788530e-02,
  159. 1.291052816975251298e-03,
  160. -1.367653946978586591e-05
  161. };
  162. T a = x * x / 4;
  163. a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1;
  164. // Maximum Deviation Found: 3.429e-18
  165. // Expected Error Term : 3.392e-18
  166. // Maximum Relative Change in Control Points : 2.041e-02
  167. // Max Error found at double precision = Poly : 2.513112e-16
  168. static const T P2[] =
  169. {
  170. 1.159315156584124484e-01,
  171. 2.789828789146031732e-01,
  172. 2.524892993216121934e-02,
  173. 8.460350907213637784e-04,
  174. 1.491471924309617534e-05,
  175. 1.627106892422088488e-07,
  176. 1.208266102392756055e-09,
  177. 6.611686391749704310e-12
  178. };
  179. return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
  180. }
  181. else
  182. {
  183. // Maximum Deviation Found: 4.316e-17
  184. // Expected Error Term : 9.570e-18
  185. // Maximum Relative Change in Control Points : 2.757e-01
  186. // Max Error found at double precision = Poly : 1.001560e-16
  187. static const T Y = 1;
  188. static const T P[] =
  189. {
  190. 2.533141373155002416e-01,
  191. 3.628342133984595192e+00,
  192. 1.868441889406606057e+01,
  193. 4.306243981063412784e+01,
  194. 4.424116209627428189e+01,
  195. 1.562095339356220468e+01,
  196. -1.810138978229410898e+00,
  197. -1.414237994269995877e+00,
  198. -9.369168119754924625e-02
  199. };
  200. static const T Q[] =
  201. {
  202. 1.000000000000000000e+00,
  203. 1.494194694879908328e+01,
  204. 8.265296455388554217e+01,
  205. 2.162779506621866970e+02,
  206. 2.845145155184222157e+02,
  207. 1.851714491916334995e+02,
  208. 5.486540717439723515e+01,
  209. 6.118075837628957015e+00,
  210. 1.586261269326235053e-01
  211. };
  212. if(x < tools::log_max_value<T>())
  213. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  214. else
  215. {
  216. T ex = exp(-x / 2);
  217. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  218. }
  219. }
  220. }
  221. template <typename T>
  222. T bessel_k0_imp(const T& x, const mpl::int_<64>&)
  223. {
  224. BOOST_MATH_STD_USING
  225. if(x <= 1)
  226. {
  227. // Maximum Deviation Found: 2.180e-22
  228. // Expected Error Term : 2.180e-22
  229. // Maximum Relative Change in Control Points : 2.943e-01
  230. // Max Error found at float80 precision = Poly : 3.923207e-20
  231. static const T Y = 1.137250900268554687500e+00;
  232. static const T P[] =
  233. {
  234. BOOST_MATH_BIG_CONSTANT(T, 64, -1.372509002685546875002e-01),
  235. BOOST_MATH_BIG_CONSTANT(T, 64, 2.566481981037407600436e-01),
  236. BOOST_MATH_BIG_CONSTANT(T, 64, 1.551881122448948854873e-02),
  237. BOOST_MATH_BIG_CONSTANT(T, 64, 6.646112454323276529650e-04),
  238. BOOST_MATH_BIG_CONSTANT(T, 64, 1.213747930378196492543e-05),
  239. BOOST_MATH_BIG_CONSTANT(T, 64, 9.423709328020389560844e-08)
  240. };
  241. static const T Q[] =
  242. {
  243. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  244. BOOST_MATH_BIG_CONSTANT(T, 64, -4.843828412587773008342e-02),
  245. BOOST_MATH_BIG_CONSTANT(T, 64, 1.088484822515098936140e-03),
  246. BOOST_MATH_BIG_CONSTANT(T, 64, -1.374724008530702784829e-05),
  247. BOOST_MATH_BIG_CONSTANT(T, 64, 8.452665455952581680339e-08)
  248. };
  249. T a = x * x / 4;
  250. a = (tools::evaluate_polynomial(P, a) / tools::evaluate_polynomial(Q, a) + Y) * a + 1;
  251. // Maximum Deviation Found: 2.440e-21
  252. // Expected Error Term : -2.434e-21
  253. // Maximum Relative Change in Control Points : 2.459e-02
  254. // Max Error found at float80 precision = Poly : 1.482487e-19
  255. static const T P2[] =
  256. {
  257. BOOST_MATH_BIG_CONSTANT(T, 64, 1.159315156584124488110e-01),
  258. BOOST_MATH_BIG_CONSTANT(T, 64, 2.764832791416047889734e-01),
  259. BOOST_MATH_BIG_CONSTANT(T, 64, 1.926062887220923354112e-02),
  260. BOOST_MATH_BIG_CONSTANT(T, 64, 3.660777862036966089410e-04),
  261. BOOST_MATH_BIG_CONSTANT(T, 64, 2.094942446930673386849e-06)
  262. };
  263. static const T Q2[] =
  264. {
  265. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  266. BOOST_MATH_BIG_CONSTANT(T, 64, -2.156100313881251616320e-02),
  267. BOOST_MATH_BIG_CONSTANT(T, 64, 2.315993873344905957033e-04),
  268. BOOST_MATH_BIG_CONSTANT(T, 64, -1.529444499350703363451e-06),
  269. BOOST_MATH_BIG_CONSTANT(T, 64, 5.524988589917857531177e-09)
  270. };
  271. return tools::evaluate_rational(P2, Q2, T(x * x)) - log(x) * a;
  272. }
  273. else
  274. {
  275. // Maximum Deviation Found: 4.291e-20
  276. // Expected Error Term : 2.236e-21
  277. // Maximum Relative Change in Control Points : 3.021e-01
  278. //Max Error found at float80 precision = Poly : 8.727378e-20
  279. static const T Y = 1;
  280. static const T P[] =
  281. {
  282. BOOST_MATH_BIG_CONSTANT(T, 64, 2.533141373155002512056e-01),
  283. BOOST_MATH_BIG_CONSTANT(T, 64, 5.417942070721928652715e+00),
  284. BOOST_MATH_BIG_CONSTANT(T, 64, 4.477464607463971754433e+01),
  285. BOOST_MATH_BIG_CONSTANT(T, 64, 1.838745728725943889876e+02),
  286. BOOST_MATH_BIG_CONSTANT(T, 64, 4.009736314927811202517e+02),
  287. BOOST_MATH_BIG_CONSTANT(T, 64, 4.557411293123609803452e+02),
  288. BOOST_MATH_BIG_CONSTANT(T, 64, 2.360222564015361268955e+02),
  289. BOOST_MATH_BIG_CONSTANT(T, 64, 2.385435333168505701022e+01),
  290. BOOST_MATH_BIG_CONSTANT(T, 64, -1.750195760942181592050e+01),
  291. BOOST_MATH_BIG_CONSTANT(T, 64, -4.059789241612946683713e+00),
  292. BOOST_MATH_BIG_CONSTANT(T, 64, -1.612783121537333908889e-01)
  293. };
  294. static const T Q[] =
  295. {
  296. BOOST_MATH_BIG_CONSTANT(T, 64, 1.000000000000000000000e+00),
  297. BOOST_MATH_BIG_CONSTANT(T, 64, 2.200669254769325861404e+01),
  298. BOOST_MATH_BIG_CONSTANT(T, 64, 1.900177593527144126549e+02),
  299. BOOST_MATH_BIG_CONSTANT(T, 64, 8.361003989965786932682e+02),
  300. BOOST_MATH_BIG_CONSTANT(T, 64, 2.041319870804843395893e+03),
  301. BOOST_MATH_BIG_CONSTANT(T, 64, 2.828491555113790345068e+03),
  302. BOOST_MATH_BIG_CONSTANT(T, 64, 2.190342229261529076624e+03),
  303. BOOST_MATH_BIG_CONSTANT(T, 64, 9.003330795963812219852e+02),
  304. BOOST_MATH_BIG_CONSTANT(T, 64, 1.773371397243777891569e+02),
  305. BOOST_MATH_BIG_CONSTANT(T, 64, 1.368634935531158398439e+01),
  306. BOOST_MATH_BIG_CONSTANT(T, 64, 2.543310879400359967327e-01)
  307. };
  308. if(x < tools::log_max_value<T>())
  309. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  310. else
  311. {
  312. T ex = exp(-x / 2);
  313. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  314. }
  315. }
  316. }
  317. template <typename T>
  318. T bessel_k0_imp(const T& x, const mpl::int_<113>&)
  319. {
  320. BOOST_MATH_STD_USING
  321. if(x <= 1)
  322. {
  323. // Maximum Deviation Found: 5.682e-37
  324. // Expected Error Term : 5.682e-37
  325. // Maximum Relative Change in Control Points : 6.094e-04
  326. // Max Error found at float128 precision = Poly : 5.338213e-35
  327. static const T Y = 1.137250900268554687500000000000000000e+00f;
  328. static const T P[] =
  329. {
  330. BOOST_MATH_BIG_CONSTANT(T, 113, -1.372509002685546875000000000000000006e-01),
  331. BOOST_MATH_BIG_CONSTANT(T, 113, 2.556212905071072782462974351698081303e-01),
  332. BOOST_MATH_BIG_CONSTANT(T, 113, 1.742459135264203478530904179889103929e-02),
  333. BOOST_MATH_BIG_CONSTANT(T, 113, 8.077860530453688571555479526961318918e-04),
  334. BOOST_MATH_BIG_CONSTANT(T, 113, 1.868173911669241091399374307788635148e-05),
  335. BOOST_MATH_BIG_CONSTANT(T, 113, 2.496405768838992243478709145123306602e-07),
  336. BOOST_MATH_BIG_CONSTANT(T, 113, 1.752489221949580551692915881999762125e-09),
  337. BOOST_MATH_BIG_CONSTANT(T, 113, 5.243010555737173524710512824955368526e-12)
  338. };
  339. static const T Q[] =
  340. {
  341. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  342. BOOST_MATH_BIG_CONSTANT(T, 113, -4.095631064064621099785696980653193721e-02),
  343. BOOST_MATH_BIG_CONSTANT(T, 113, 8.313880983725212151967078809725835532e-04),
  344. BOOST_MATH_BIG_CONSTANT(T, 113, -1.095229912293480063501285562382835142e-05),
  345. BOOST_MATH_BIG_CONSTANT(T, 113, 1.022828799511943141130509410251996277e-07),
  346. BOOST_MATH_BIG_CONSTANT(T, 113, -6.860874007419812445494782795829046836e-10),
  347. BOOST_MATH_BIG_CONSTANT(T, 113, 3.107297802344970725756092082686799037e-12),
  348. BOOST_MATH_BIG_CONSTANT(T, 113, -7.460529579244623559164763757787600944e-15)
  349. };
  350. T a = x * x / 4;
  351. a = (tools::evaluate_rational(P, Q, a) + Y) * a + 1;
  352. // Maximum Deviation Found: 5.173e-38
  353. // Expected Error Term : 5.105e-38
  354. // Maximum Relative Change in Control Points : 9.734e-03
  355. // Max Error found at float128 precision = Poly : 1.688806e-34
  356. static const T P2[] =
  357. {
  358. BOOST_MATH_BIG_CONSTANT(T, 113, 1.159315156584124488107200313757741370e-01),
  359. BOOST_MATH_BIG_CONSTANT(T, 113, 2.789828789146031122026800078439435369e-01),
  360. BOOST_MATH_BIG_CONSTANT(T, 113, 2.524892993216269451266750049024628432e-02),
  361. BOOST_MATH_BIG_CONSTANT(T, 113, 8.460350907082229957222453839935101823e-04),
  362. BOOST_MATH_BIG_CONSTANT(T, 113, 1.491471929926042875260452849503857976e-05),
  363. BOOST_MATH_BIG_CONSTANT(T, 113, 1.627105610481598430816014719558896866e-07),
  364. BOOST_MATH_BIG_CONSTANT(T, 113, 1.208426165007797264194914898538250281e-09),
  365. BOOST_MATH_BIG_CONSTANT(T, 113, 6.508697838747354949164182457073784117e-12),
  366. BOOST_MATH_BIG_CONSTANT(T, 113, 2.659784680639805301101014383907273109e-14),
  367. BOOST_MATH_BIG_CONSTANT(T, 113, 8.531090131964391104248859415958109654e-17),
  368. BOOST_MATH_BIG_CONSTANT(T, 113, 2.205195117066478034260323124669936314e-19),
  369. BOOST_MATH_BIG_CONSTANT(T, 113, 4.692219280289030165761119775783115426e-22),
  370. BOOST_MATH_BIG_CONSTANT(T, 113, 8.362350161092532344171965861545860747e-25),
  371. BOOST_MATH_BIG_CONSTANT(T, 113, 1.277990623924628999539014980773738258e-27)
  372. };
  373. return tools::evaluate_polynomial(P2, T(x * x)) - log(x) * a;
  374. }
  375. else
  376. {
  377. // Maximum Deviation Found: 1.462e-34
  378. // Expected Error Term : 4.917e-40
  379. // Maximum Relative Change in Control Points : 3.385e-01
  380. // Max Error found at float128 precision = Poly : 1.567573e-34
  381. static const T Y = 1;
  382. static const T P[] =
  383. {
  384. BOOST_MATH_BIG_CONSTANT(T, 113, 2.533141373155002512078826424055226265e-01),
  385. BOOST_MATH_BIG_CONSTANT(T, 113, 2.001949740768235770078339977110749204e+01),
  386. BOOST_MATH_BIG_CONSTANT(T, 113, 6.991516715983883248363351472378349986e+02),
  387. BOOST_MATH_BIG_CONSTANT(T, 113, 1.429587951594593159075690819360687720e+04),
  388. BOOST_MATH_BIG_CONSTANT(T, 113, 1.911933815201948768044660065771258450e+05),
  389. BOOST_MATH_BIG_CONSTANT(T, 113, 1.769943016204926614862175317962439875e+06),
  390. BOOST_MATH_BIG_CONSTANT(T, 113, 1.170866154649560750500954150401105606e+07),
  391. BOOST_MATH_BIG_CONSTANT(T, 113, 5.634687099724383996792011977705727661e+07),
  392. BOOST_MATH_BIG_CONSTANT(T, 113, 1.989524036456492581597607246664394014e+08),
  393. BOOST_MATH_BIG_CONSTANT(T, 113, 5.160394785715328062088529400178080360e+08),
  394. BOOST_MATH_BIG_CONSTANT(T, 113, 9.778173054417826368076483100902201433e+08),
  395. BOOST_MATH_BIG_CONSTANT(T, 113, 1.335667778588806892764139643950439733e+09),
  396. BOOST_MATH_BIG_CONSTANT(T, 113, 1.283635100080306980206494425043706838e+09),
  397. BOOST_MATH_BIG_CONSTANT(T, 113, 8.300616188213640626577036321085025855e+08),
  398. BOOST_MATH_BIG_CONSTANT(T, 113, 3.277591957076162984986406540894621482e+08),
  399. BOOST_MATH_BIG_CONSTANT(T, 113, 5.564360536834214058158565361486115932e+07),
  400. BOOST_MATH_BIG_CONSTANT(T, 113, -1.043505161612403359098596828115690596e+07),
  401. BOOST_MATH_BIG_CONSTANT(T, 113, -7.217035248223503605127967970903027314e+06),
  402. BOOST_MATH_BIG_CONSTANT(T, 113, -1.422938158797326748375799596769964430e+06),
  403. BOOST_MATH_BIG_CONSTANT(T, 113, -1.229125746200586805278634786674745210e+05),
  404. BOOST_MATH_BIG_CONSTANT(T, 113, -4.201632288615609937883545928660649813e+03),
  405. BOOST_MATH_BIG_CONSTANT(T, 113, -3.690820607338480548346746717311811406e+01)
  406. };
  407. static const T Q[] =
  408. {
  409. BOOST_MATH_BIG_CONSTANT(T, 113, 1.000000000000000000000000000000000000e+00),
  410. BOOST_MATH_BIG_CONSTANT(T, 113, 7.964877874035741452203497983642653107e+01),
  411. BOOST_MATH_BIG_CONSTANT(T, 113, 2.808929943826193766839360018583294769e+03),
  412. BOOST_MATH_BIG_CONSTANT(T, 113, 5.814524004679994110944366890912384139e+04),
  413. BOOST_MATH_BIG_CONSTANT(T, 113, 7.897794522506725610540209610337355118e+05),
  414. BOOST_MATH_BIG_CONSTANT(T, 113, 7.456339470955813675629523617440433672e+06),
  415. BOOST_MATH_BIG_CONSTANT(T, 113, 5.057818717813969772198911392875127212e+07),
  416. BOOST_MATH_BIG_CONSTANT(T, 113, 2.513821619536852436424913886081133209e+08),
  417. BOOST_MATH_BIG_CONSTANT(T, 113, 9.255938846873380596038513316919990776e+08),
  418. BOOST_MATH_BIG_CONSTANT(T, 113, 2.537077551699028079347581816919572141e+09),
  419. BOOST_MATH_BIG_CONSTANT(T, 113, 5.176769339768120752974843214652367321e+09),
  420. BOOST_MATH_BIG_CONSTANT(T, 113, 7.828722317390455845253191337207432060e+09),
  421. BOOST_MATH_BIG_CONSTANT(T, 113, 8.698864296569996402006511705803675890e+09),
  422. BOOST_MATH_BIG_CONSTANT(T, 113, 7.007803261356636409943826918468544629e+09),
  423. BOOST_MATH_BIG_CONSTANT(T, 113, 4.016564631288740308993071395104715469e+09),
  424. BOOST_MATH_BIG_CONSTANT(T, 113, 1.595893010619754750655947035567624730e+09),
  425. BOOST_MATH_BIG_CONSTANT(T, 113, 4.241241839120481076862742189989406856e+08),
  426. BOOST_MATH_BIG_CONSTANT(T, 113, 7.168778094393076220871007550235840858e+07),
  427. BOOST_MATH_BIG_CONSTANT(T, 113, 7.156200301360388147635052029404211109e+06),
  428. BOOST_MATH_BIG_CONSTANT(T, 113, 3.752130382550379886741949463587008794e+05),
  429. BOOST_MATH_BIG_CONSTANT(T, 113, 8.370574966987293592457152146806662562e+03),
  430. BOOST_MATH_BIG_CONSTANT(T, 113, 4.871254714311063594080644835895740323e+01)
  431. };
  432. if(x < tools::log_max_value<T>())
  433. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * exp(-x) / sqrt(x));
  434. else
  435. {
  436. T ex = exp(-x / 2);
  437. return ((tools::evaluate_rational(P, Q, T(1 / x)) + Y) * ex / sqrt(x)) * ex;
  438. }
  439. }
  440. }
  441. template <typename T>
  442. T bessel_k0_imp(const T& x, const mpl::int_<0>&)
  443. {
  444. if(boost::math::tools::digits<T>() <= 24)
  445. return bessel_k0_imp(x, mpl::int_<24>());
  446. else if(boost::math::tools::digits<T>() <= 53)
  447. return bessel_k0_imp(x, mpl::int_<53>());
  448. else if(boost::math::tools::digits<T>() <= 64)
  449. return bessel_k0_imp(x, mpl::int_<64>());
  450. else if(boost::math::tools::digits<T>() <= 113)
  451. return bessel_k0_imp(x, mpl::int_<113>());
  452. BOOST_ASSERT(0);
  453. return 0;
  454. }
  455. template <typename T>
  456. inline T bessel_k0(const T& x)
  457. {
  458. typedef mpl::int_<
  459. ((std::numeric_limits<T>::digits == 0) || (std::numeric_limits<T>::radix != 2)) ?
  460. 0 :
  461. std::numeric_limits<T>::digits <= 24 ?
  462. 24 :
  463. std::numeric_limits<T>::digits <= 53 ?
  464. 53 :
  465. std::numeric_limits<T>::digits <= 64 ?
  466. 64 :
  467. std::numeric_limits<T>::digits <= 113 ?
  468. 113 : -1
  469. > tag_type;
  470. bessel_k0_initializer<T, tag_type>::force_instantiate();
  471. return bessel_k0_imp(x, tag_type());
  472. }
  473. }}} // namespaces
  474. #ifdef _MSC_VER
  475. #pragma warning(pop)
  476. #endif
  477. #endif // BOOST_MATH_BESSEL_K0_HPP