insert.hpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592
  1. // Boost.Geometry Index
  2. //
  3. // R-tree R*-tree insert algorithm implementation
  4. //
  5. // Copyright (c) 2011-2015 Adam Wulkiewicz, Lodz, Poland.
  6. //
  7. // Use, modification and distribution is subject to the Boost Software License,
  8. // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  9. // http://www.boost.org/LICENSE_1_0.txt)
  10. #ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  11. #define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  12. #include <boost/geometry/index/detail/algorithms/content.hpp>
  13. namespace boost { namespace geometry { namespace index {
  14. namespace detail { namespace rtree { namespace visitors {
  15. namespace rstar {
  16. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  17. class remove_elements_to_reinsert
  18. {
  19. public:
  20. typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  21. typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  22. typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  23. typedef typename Options::parameters_type parameters_type;
  24. //typedef typename Allocators::internal_node_pointer internal_node_pointer;
  25. typedef internal_node * internal_node_pointer;
  26. template <typename ResultElements, typename Node>
  27. static inline void apply(ResultElements & result_elements,
  28. Node & n,
  29. internal_node_pointer parent,
  30. size_t current_child_index,
  31. parameters_type const& parameters,
  32. Translator const& translator,
  33. Allocators & allocators)
  34. {
  35. typedef typename rtree::elements_type<Node>::type elements_type;
  36. typedef typename elements_type::value_type element_type;
  37. typedef typename geometry::point_type<Box>::type point_type;
  38. // TODO: awulkiew - change second point_type to the point type of the Indexable?
  39. typedef typename
  40. geometry::default_comparable_distance_result<point_type>::type
  41. comparable_distance_type;
  42. elements_type & elements = rtree::elements(n);
  43. const size_t elements_count = parameters.get_max_elements() + 1;
  44. const size_t reinserted_elements_count = (::std::min)(parameters.get_reinserted_elements(), elements_count - parameters.get_min_elements());
  45. BOOST_GEOMETRY_INDEX_ASSERT(parent, "node shouldn't be the root node");
  46. BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected elements number");
  47. BOOST_GEOMETRY_INDEX_ASSERT(0 < reinserted_elements_count, "wrong value of elements to reinsert");
  48. // calculate current node's center
  49. point_type node_center;
  50. geometry::centroid(rtree::elements(*parent)[current_child_index].first, node_center);
  51. // fill the container of centers' distances of children from current node's center
  52. typedef typename index::detail::rtree::container_from_elements_type<
  53. elements_type,
  54. std::pair<comparable_distance_type, element_type>
  55. >::type sorted_elements_type;
  56. sorted_elements_type sorted_elements;
  57. // If constructor is used instead of resize() MS implementation leaks here
  58. sorted_elements.reserve(elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  59. for ( typename elements_type::const_iterator it = elements.begin() ;
  60. it != elements.end() ; ++it )
  61. {
  62. point_type element_center;
  63. geometry::centroid( rtree::element_indexable(*it, translator), element_center);
  64. sorted_elements.push_back(std::make_pair(
  65. geometry::comparable_distance(node_center, element_center),
  66. *it)); // MAY THROW (V, E: copy)
  67. }
  68. // sort elements by distances from center
  69. std::partial_sort(
  70. sorted_elements.begin(),
  71. sorted_elements.begin() + reinserted_elements_count,
  72. sorted_elements.end(),
  73. distances_dsc<comparable_distance_type, element_type>); // MAY THROW, BASIC (V, E: copy)
  74. // copy elements which will be reinserted
  75. result_elements.clear();
  76. result_elements.reserve(reinserted_elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  77. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() ;
  78. it != sorted_elements.begin() + reinserted_elements_count ; ++it )
  79. {
  80. result_elements.push_back(it->second); // MAY THROW (V, E: copy)
  81. }
  82. BOOST_TRY
  83. {
  84. // copy remaining elements to the current node
  85. elements.clear();
  86. elements.reserve(elements_count - reinserted_elements_count); // SHOULDN'T THROW (new_size <= old size)
  87. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() + reinserted_elements_count;
  88. it != sorted_elements.end() ; ++it )
  89. {
  90. elements.push_back(it->second); // MAY THROW (V, E: copy)
  91. }
  92. }
  93. BOOST_CATCH(...)
  94. {
  95. elements.clear();
  96. for ( typename sorted_elements_type::iterator it = sorted_elements.begin() ;
  97. it != sorted_elements.end() ; ++it )
  98. {
  99. destroy_element<Value, Options, Translator, Box, Allocators>::apply(it->second, allocators);
  100. }
  101. BOOST_RETHROW // RETHROW
  102. }
  103. BOOST_CATCH_END
  104. ::boost::ignore_unused_variable_warning(parameters);
  105. }
  106. private:
  107. template <typename Distance, typename El>
  108. static inline bool distances_asc(
  109. std::pair<Distance, El> const& d1,
  110. std::pair<Distance, El> const& d2)
  111. {
  112. return d1.first < d2.first;
  113. }
  114. template <typename Distance, typename El>
  115. static inline bool distances_dsc(
  116. std::pair<Distance, El> const& d1,
  117. std::pair<Distance, El> const& d2)
  118. {
  119. return d1.first > d2.first;
  120. }
  121. };
  122. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Box, typename Allocators>
  123. struct level_insert_elements_type
  124. {
  125. typedef typename rtree::elements_type<
  126. typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  127. >::type type;
  128. };
  129. template <typename Value, typename Options, typename Box, typename Allocators>
  130. struct level_insert_elements_type<0, Value, Value, Options, Box, Allocators>
  131. {
  132. typedef typename rtree::elements_type<
  133. typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  134. >::type type;
  135. };
  136. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  137. struct level_insert_base
  138. : public detail::insert<Element, Value, Options, Translator, Box, Allocators>
  139. {
  140. typedef detail::insert<Element, Value, Options, Translator, Box, Allocators> base;
  141. typedef typename base::node node;
  142. typedef typename base::internal_node internal_node;
  143. typedef typename base::leaf leaf;
  144. typedef typename level_insert_elements_type<InsertIndex, Element, Value, Options, Box, Allocators>::type elements_type;
  145. typedef typename index::detail::rtree::container_from_elements_type<
  146. elements_type,
  147. typename elements_type::value_type
  148. >::type result_elements_type;
  149. typedef typename Options::parameters_type parameters_type;
  150. typedef typename Allocators::node_pointer node_pointer;
  151. typedef typename Allocators::size_type size_type;
  152. inline level_insert_base(node_pointer & root,
  153. size_type & leafs_level,
  154. Element const& element,
  155. parameters_type const& parameters,
  156. Translator const& translator,
  157. Allocators & allocators,
  158. size_type relative_level)
  159. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  160. , result_relative_level(0)
  161. {}
  162. template <typename Node>
  163. inline void handle_possible_reinsert_or_split_of_root(Node &n)
  164. {
  165. BOOST_GEOMETRY_INDEX_ASSERT(result_elements.empty(), "reinsert should be handled only once for level");
  166. result_relative_level = base::m_leafs_level - base::m_traverse_data.current_level;
  167. // overflow
  168. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  169. {
  170. // node isn't root node
  171. if ( !base::m_traverse_data.current_is_root() )
  172. {
  173. // NOTE: exception-safety
  174. // After an exception result_elements may contain garbage, don't use it
  175. rstar::remove_elements_to_reinsert<Value, Options, Translator, Box, Allocators>::apply(
  176. result_elements, n,
  177. base::m_traverse_data.parent, base::m_traverse_data.current_child_index,
  178. base::m_parameters, base::m_translator, base::m_allocators); // MAY THROW, BASIC (V, E: alloc, copy)
  179. }
  180. // node is root node
  181. else
  182. {
  183. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<Node>(*base::m_root_node), "node should be the root node");
  184. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  185. }
  186. }
  187. }
  188. template <typename Node>
  189. inline void handle_possible_split(Node &n) const
  190. {
  191. // overflow
  192. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  193. {
  194. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  195. }
  196. }
  197. template <typename Node>
  198. inline void recalculate_aabb_if_necessary(Node const& n) const
  199. {
  200. if ( !result_elements.empty() && !base::m_traverse_data.current_is_root() )
  201. {
  202. // calulate node's new box
  203. recalculate_aabb(n);
  204. }
  205. }
  206. template <typename Node>
  207. inline void recalculate_aabb(Node const& n) const
  208. {
  209. base::m_traverse_data.current_element().first =
  210. elements_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(), base::m_translator);
  211. }
  212. inline void recalculate_aabb(leaf const& n) const
  213. {
  214. base::m_traverse_data.current_element().first =
  215. values_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(), base::m_translator);
  216. }
  217. size_type result_relative_level;
  218. result_elements_type result_elements;
  219. };
  220. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  221. struct level_insert
  222. : public level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators>
  223. {
  224. typedef level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators> base;
  225. typedef typename base::node node;
  226. typedef typename base::internal_node internal_node;
  227. typedef typename base::leaf leaf;
  228. typedef typename Options::parameters_type parameters_type;
  229. typedef typename Allocators::node_pointer node_pointer;
  230. typedef typename Allocators::size_type size_type;
  231. inline level_insert(node_pointer & root,
  232. size_type & leafs_level,
  233. Element const& element,
  234. parameters_type const& parameters,
  235. Translator const& translator,
  236. Allocators & allocators,
  237. size_type relative_level)
  238. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  239. {}
  240. inline void operator()(internal_node & n)
  241. {
  242. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  243. if ( base::m_traverse_data.current_level < base::m_level )
  244. {
  245. // next traversing step
  246. base::traverse(*this, n); // MAY THROW (E: alloc, copy, N: alloc)
  247. // further insert
  248. if ( 0 < InsertIndex )
  249. {
  250. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  251. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  252. {
  253. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  254. }
  255. }
  256. }
  257. else
  258. {
  259. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level, "unexpected level");
  260. BOOST_TRY
  261. {
  262. // push new child node
  263. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (E: alloc, copy)
  264. }
  265. BOOST_CATCH(...)
  266. {
  267. // NOTE: exception-safety
  268. // if the insert fails above, the element won't be stored in the tree, so delete it
  269. rtree::visitors::destroy<Value, Options, Translator, Box, Allocators> del_v(base::m_element.second, base::m_allocators);
  270. rtree::apply_visitor(del_v, *base::m_element.second);
  271. BOOST_RETHROW // RETHROW
  272. }
  273. BOOST_CATCH_END
  274. // first insert
  275. if ( 0 == InsertIndex )
  276. {
  277. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  278. }
  279. // not the first insert
  280. else
  281. {
  282. base::handle_possible_split(n); // MAY THROW (E: alloc, N: alloc)
  283. }
  284. }
  285. base::recalculate_aabb_if_necessary(n);
  286. }
  287. inline void operator()(leaf &)
  288. {
  289. BOOST_GEOMETRY_INDEX_ASSERT(false, "this visitor can't be used for a leaf");
  290. }
  291. };
  292. template <size_t InsertIndex, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  293. struct level_insert<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  294. : public level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  295. {
  296. typedef level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators> base;
  297. typedef typename base::node node;
  298. typedef typename base::internal_node internal_node;
  299. typedef typename base::leaf leaf;
  300. typedef typename Options::parameters_type parameters_type;
  301. typedef typename Allocators::node_pointer node_pointer;
  302. typedef typename Allocators::size_type size_type;
  303. inline level_insert(node_pointer & root,
  304. size_type & leafs_level,
  305. Value const& v,
  306. parameters_type const& parameters,
  307. Translator const& translator,
  308. Allocators & allocators,
  309. size_type relative_level)
  310. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  311. {}
  312. inline void operator()(internal_node & n)
  313. {
  314. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  315. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level, "unexpected level");
  316. // next traversing step
  317. base::traverse(*this, n); // MAY THROW (V, E: alloc, copy, N: alloc)
  318. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  319. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  320. {
  321. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  322. }
  323. base::recalculate_aabb_if_necessary(n);
  324. }
  325. inline void operator()(leaf & n)
  326. {
  327. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  328. "unexpected level");
  329. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  330. base::m_level == (std::numeric_limits<size_t>::max)(),
  331. "unexpected level");
  332. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  333. base::handle_possible_split(n); // MAY THROW (V: alloc, copy, N: alloc)
  334. }
  335. };
  336. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  337. struct level_insert<0, Value, Value, Options, Translator, Box, Allocators>
  338. : public level_insert_base<0, Value, Value, Options, Translator, Box, Allocators>
  339. {
  340. typedef level_insert_base<0, Value, Value, Options, Translator, Box, Allocators> base;
  341. typedef typename base::node node;
  342. typedef typename base::internal_node internal_node;
  343. typedef typename base::leaf leaf;
  344. typedef typename Options::parameters_type parameters_type;
  345. typedef typename Allocators::node_pointer node_pointer;
  346. typedef typename Allocators::size_type size_type;
  347. inline level_insert(node_pointer & root,
  348. size_type & leafs_level,
  349. Value const& v,
  350. parameters_type const& parameters,
  351. Translator const& translator,
  352. Allocators & allocators,
  353. size_type relative_level)
  354. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  355. {}
  356. inline void operator()(internal_node & n)
  357. {
  358. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level,
  359. "unexpected level");
  360. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level,
  361. "unexpected level");
  362. // next traversing step
  363. base::traverse(*this, n); // MAY THROW (V: alloc, copy, N: alloc)
  364. base::recalculate_aabb_if_necessary(n);
  365. }
  366. inline void operator()(leaf & n)
  367. {
  368. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  369. "unexpected level");
  370. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  371. base::m_level == (std::numeric_limits<size_t>::max)(),
  372. "unexpected level");
  373. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  374. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (V: alloc, copy, N: alloc)
  375. base::recalculate_aabb_if_necessary(n);
  376. }
  377. };
  378. } // namespace rstar
  379. // R*-tree insert visitor
  380. // After passing the Element to insert visitor the Element is managed by the tree
  381. // I.e. one should not delete the node passed to the insert visitor after exception is thrown
  382. // because this visitor may delete it
  383. template <typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  384. class insert<Element, Value, Options, Translator, Box, Allocators, insert_reinsert_tag>
  385. : public rtree::visitor<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag, false>::type
  386. {
  387. typedef typename Options::parameters_type parameters_type;
  388. typedef typename rtree::node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  389. typedef typename rtree::internal_node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  390. typedef typename rtree::leaf<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  391. typedef typename Allocators::node_pointer node_pointer;
  392. typedef typename Allocators::size_type size_type;
  393. public:
  394. inline insert(node_pointer & root,
  395. size_type & leafs_level,
  396. Element const& element,
  397. parameters_type const& parameters,
  398. Translator const& translator,
  399. Allocators & allocators,
  400. size_type relative_level = 0)
  401. : m_root(root), m_leafs_level(leafs_level), m_element(element)
  402. , m_parameters(parameters), m_translator(translator)
  403. , m_relative_level(relative_level), m_allocators(allocators)
  404. {}
  405. inline void operator()(internal_node & n)
  406. {
  407. boost::ignore_unused(n);
  408. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<internal_node>(*m_root), "current node should be the root");
  409. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  410. if ( m_parameters.get_reinserted_elements() > 0 )
  411. {
  412. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  413. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  414. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  415. if ( !lins_v.result_elements.empty() )
  416. {
  417. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  418. }
  419. }
  420. else
  421. {
  422. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  423. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  424. rtree::apply_visitor(ins_v, *m_root);
  425. }
  426. }
  427. inline void operator()(leaf & n)
  428. {
  429. boost::ignore_unused(n);
  430. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<leaf>(*m_root), "current node should be the root");
  431. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  432. if ( m_parameters.get_reinserted_elements() > 0 )
  433. {
  434. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  435. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  436. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  437. // we're in the root, so root should be split and there should be no elements to reinsert
  438. BOOST_GEOMETRY_INDEX_ASSERT(lins_v.result_elements.empty(), "unexpected state");
  439. }
  440. else
  441. {
  442. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  443. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  444. rtree::apply_visitor(ins_v, *m_root);
  445. }
  446. }
  447. private:
  448. template <typename Elements>
  449. inline void recursive_reinsert(Elements & elements, size_t relative_level)
  450. {
  451. typedef typename Elements::value_type element_type;
  452. // reinsert children starting from the minimum distance
  453. typename Elements::reverse_iterator it = elements.rbegin();
  454. for ( ; it != elements.rend() ; ++it)
  455. {
  456. rstar::level_insert<1, element_type, Value, Options, Translator, Box, Allocators> lins_v(
  457. m_root, m_leafs_level, *it, m_parameters, m_translator, m_allocators, relative_level);
  458. BOOST_TRY
  459. {
  460. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  461. }
  462. BOOST_CATCH(...)
  463. {
  464. ++it;
  465. for ( ; it != elements.rend() ; ++it)
  466. rtree::destroy_element<Value, Options, Translator, Box, Allocators>::apply(*it, m_allocators);
  467. BOOST_RETHROW // RETHROW
  468. }
  469. BOOST_CATCH_END
  470. BOOST_GEOMETRY_INDEX_ASSERT(relative_level + 1 == lins_v.result_relative_level, "unexpected level");
  471. // non-root relative level
  472. if ( lins_v.result_relative_level < m_leafs_level && !lins_v.result_elements.empty())
  473. {
  474. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  475. }
  476. }
  477. }
  478. node_pointer & m_root;
  479. size_type & m_leafs_level;
  480. Element const& m_element;
  481. parameters_type const& m_parameters;
  482. Translator const& m_translator;
  483. size_type m_relative_level;
  484. Allocators & m_allocators;
  485. };
  486. }}} // namespace detail::rtree::visitors
  487. }}} // namespace boost::geometry::index
  488. #endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP