| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- ///////////////////////////////////////////////////////////////////////
- // File: series.h
- // Description: Runs networks in series on the same input.
- // Author: Ray Smith
- // Created: Thu May 02 08:20:06 PST 2013
- //
- // (C) Copyright 2013, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_SERIES_H_
- #define TESSERACT_LSTM_SERIES_H_
- #include "plumbing.h"
- namespace tesseract {
- // Runs two or more networks in series (layers) on the same input.
- class Series : public Plumbing {
- public:
- // ni_ and no_ will be set by AddToStack.
- explicit Series(const STRING& name);
- ~Series() override = default;
- // Returns the shape output from the network given an input shape (which may
- // be partially unknown ie zero).
- StaticShape OutputShape(const StaticShape& input_shape) const override;
- STRING spec() const override {
- STRING spec("[");
- for (int i = 0; i < stack_.size(); ++i)
- spec += stack_[i]->spec();
- spec += "]";
- return spec;
- }
- // Sets up the network for training. Initializes weights using weights of
- // scale `range` picked according to the random number generator `randomizer`.
- // Returns the number of weights initialized.
- int InitWeights(float range, TRand* randomizer) override;
- // Recursively searches the network for softmaxes with old_no outputs,
- // and remaps their outputs according to code_map. See network.h for details.
- int RemapOutputs(int old_no, const std::vector<int>& code_map) override;
- // Sets needs_to_backprop_ to needs_backprop and returns true if
- // needs_backprop || any weights in this network so the next layer forward
- // can be told to produce backprop for this layer if needed.
- bool SetupNeedsBackprop(bool needs_backprop) override;
- // Returns an integer reduction factor that the network applies to the
- // time sequence. Assumes that any 2-d is already eliminated. Used for
- // scaling bounding boxes of truth data.
- // WARNING: if GlobalMinimax is used to vary the scale, this will return
- // the last used scale factor. Call it before any forward, and it will return
- // the minimum scale factor of the paths through the GlobalMinimax.
- int XScaleFactor() const override;
- // Provides the (minimum) x scale factor to the network (of interest only to
- // input units) so they can determine how to scale bounding boxes.
- void CacheXScaleFactor(int factor) override;
- // Runs forward propagation of activations on the input line.
- // See Network for a detailed discussion of the arguments.
- void Forward(bool debug, const NetworkIO& input,
- const TransposedArray* input_transpose, NetworkScratch* scratch,
- NetworkIO* output) override;
- // Runs backward propagation of errors on the deltas line.
- // See Network for a detailed discussion of the arguments.
- bool Backward(bool debug, const NetworkIO& fwd_deltas,
- NetworkScratch* scratch, NetworkIO* back_deltas) override;
- // Splits the series after the given index, returning the two parts and
- // deletes itself. The first part, up to network with index last_start, goes
- // into start, and the rest goes into end.
- void SplitAt(int last_start, Series** start, Series** end);
- // Appends the elements of the src series to this, removing from src and
- // deleting it.
- void AppendSeries(Network* src);
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_SERIES_H_
|