| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346 |
- ///////////////////////////////////////////////////////////////////////
- // File: networkio.h
- // Description: Network input/output data, allowing float/int implementations.
- // Author: Ray Smith
- // Created: Tue Jun 17 08:43:11 PST 2014
- //
- // (C) Copyright 2014, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_NETWORKIO_H_
- #define TESSERACT_LSTM_NETWORKIO_H_
- #include <cmath>
- #include <cstdio>
- #include <vector>
- #include "genericvector.h"
- #include "helpers.h"
- #include "static_shape.h"
- #include "stridemap.h"
- #include "weightmatrix.h"
- struct Pix;
- namespace tesseract {
- // Class to contain all the input/output of a network, allowing for fixed or
- // variable-strided 2d to 1d mapping, and float or int8_t values. Provides
- // enough calculating functions to hide the detail of the implementation.
- class NetworkIO {
- public:
- NetworkIO() : int_mode_(false) {}
- // Resizes the array (and stride), avoiding realloc if possible, to the given
- // size from various size specs:
- // Same stride size, but given number of features.
- void Resize(const NetworkIO& src, int num_features) {
- ResizeToMap(src.int_mode(), src.stride_map(), num_features);
- }
- // Resizes to a specific size as a 2-d temp buffer. No batches, no y-dim.
- void Resize2d(bool int_mode, int width, int num_features);
- // Resizes forcing a float representation with the stridemap of src and the
- // given number of features.
- void ResizeFloat(const NetworkIO& src, int num_features) {
- ResizeToMap(false, src.stride_map(), num_features);
- }
- // Resizes to a specific stride_map.
- void ResizeToMap(bool int_mode, const StrideMap& stride_map,
- int num_features);
- // Shrinks image size by x_scale,y_scale, and use given number of features.
- void ResizeScaled(const NetworkIO& src, int x_scale, int y_scale,
- int num_features);
- // Resizes to just 1 x-coord, whatever the input.
- void ResizeXTo1(const NetworkIO& src, int num_features);
- // Initialize all the array to zero.
- void Zero();
- // Initializes to zero all elements of the array that do not correspond to
- // valid image positions. (If a batch of different-sized images are packed
- // together, then there will be padding pixels.)
- void ZeroInvalidElements();
- // Sets up the array from the given image, using the currently set int_mode_.
- // If the image width doesn't match the shape, the image is truncated or
- // padded with noise to match.
- void FromPix(const StaticShape& shape, const Pix* pix, TRand* randomizer);
- // Sets up the array from the given set of images, using the currently set
- // int_mode_. If the image width doesn't match the shape, the images are
- // truncated or padded with noise to match.
- void FromPixes(const StaticShape& shape, const std::vector<const Pix*>& pixes,
- TRand* randomizer);
- // Copies the given pix to *this at the given batch index, stretching and
- // clipping the pixel values so that [black, black + 2*contrast] maps to the
- // dynamic range of *this, ie [-1,1] for a float and (-127,127) for int.
- // This is a 2-d operation in the sense that the output depth is the number
- // of input channels, the height is the height of the image, and the width
- // is the width of the image, or truncated/padded with noise if the width
- // is a fixed size.
- void Copy2DImage(int batch, Pix* pix, float black, float contrast,
- TRand* randomizer);
- // Copies the given pix to *this at the given batch index, as Copy2DImage
- // above, except that the output depth is the height of the input image, the
- // output height is 1, and the output width as for Copy2DImage.
- // The image is thus treated as a 1-d set of vertical pixel strips.
- void Copy1DGreyImage(int batch, Pix* pix, float black, float contrast,
- TRand* randomizer);
- // Helper stores the pixel value in i_ or f_ according to int_mode_.
- // t: is the index from the StrideMap corresponding to the current
- // [batch,y,x] position
- // f: is the index into the depth/channel
- // pixel: the value of the pixel from the image (in one channel)
- // black: the pixel value to map to the lowest of the range of *this
- // contrast: the range of pixel values to stretch to half the range of *this.
- void SetPixel(int t, int f, int pixel, float black, float contrast);
- // Converts the array to a Pix. Must be pixDestroyed after use.
- Pix* ToPix() const;
- // Prints the first and last num timesteps of the array for each feature.
- void Print(int num) const;
- // Returns the timestep width.
- int Width() const {
- return int_mode_ ? i_.dim1() : f_.dim1();
- }
- // Returns the number of features.
- int NumFeatures() const {
- return int_mode_ ? i_.dim2() : f_.dim2();
- }
- // Accessor to a timestep of the float matrix.
- float* f(int t) {
- ASSERT_HOST(!int_mode_);
- return f_[t];
- }
- const float* f(int t) const {
- ASSERT_HOST(!int_mode_);
- return f_[t];
- }
- const int8_t* i(int t) const {
- ASSERT_HOST(int_mode_);
- return i_[t];
- }
- bool int_mode() const {
- return int_mode_;
- }
- void set_int_mode(bool is_quantized) {
- int_mode_ = is_quantized;
- }
- const StrideMap& stride_map() const {
- return stride_map_;
- }
- void set_stride_map(const StrideMap& map) {
- stride_map_ = map;
- }
- const GENERIC_2D_ARRAY<float>& float_array() const { return f_; }
- GENERIC_2D_ARRAY<float>* mutable_float_array() { return &f_; }
- // Copies a single time step from src.
- void CopyTimeStepFrom(int dest_t, const NetworkIO& src, int src_t);
- // Copies a part of single time step from src.
- void CopyTimeStepGeneral(int dest_t, int dest_offset, int num_features,
- const NetworkIO& src, int src_t, int src_offset);
- // Zeroes a single time step.
- void ZeroTimeStep(int t) { ZeroTimeStepGeneral(t, 0, NumFeatures()); }
- void ZeroTimeStepGeneral(int t, int offset, int num_features);
- // Sets the given range to random values.
- void Randomize(int t, int offset, int num_features, TRand* randomizer);
- // Helper returns the label and score of the best choice over a range.
- int BestChoiceOverRange(int t_start, int t_end, int not_this, int null_ch,
- float* rating, float* certainty) const;
- // Helper returns the rating and certainty of the choice over a range in t.
- void ScoresOverRange(int t_start, int t_end, int choice, int null_ch,
- float* rating, float* certainty) const;
- // Returns the index (label) of the best value at the given timestep,
- // and if not null, sets the score to the log of the corresponding value.
- int BestLabel(int t, float* score) const {
- return BestLabel(t, -1, -1, score);
- }
- // Returns the index (label) of the best value at the given timestep,
- // excluding not_this and not_that, and if not null, sets the score to the
- // log of the corresponding value.
- int BestLabel(int t, int not_this, int not_that, float* score) const;
- // Returns the best start position out of range (into which both start and end
- // must fit) to obtain the highest cumulative score for the given labels.
- int PositionOfBestMatch(const GenericVector<int>& labels, int start,
- int end) const;
- // Returns the cumulative score of the given labels starting at start, and
- // using one label per time-step.
- double ScoreOfLabels(const GenericVector<int>& labels, int start) const;
- // Helper function sets all the outputs for a single timestep, such that
- // label has value ok_score, and the other labels share 1 - ok_score.
- // Assumes float mode.
- void SetActivations(int t, int label, float ok_score);
- // Modifies the values, only if needed, so that the given label is
- // the winner at the given time step t.
- // Assumes float mode.
- void EnsureBestLabel(int t, int label);
- // Helper function converts prob to certainty taking the minimum into account.
- static float ProbToCertainty(float prob);
- // Returns true if there is any bad value that is suspiciously like a GT
- // error. Assuming that *this is the difference(gradient) between target
- // and forward output, returns true if there is a large negative value
- // (correcting a very confident output) for which there is no corresponding
- // positive value in an adjacent timestep for the same feature index. This
- // allows the box-truthed samples to make fine adjustments to position while
- // stopping other disagreements of confident output with ground truth.
- bool AnySuspiciousTruth(float confidence_thr) const;
- // Reads a single timestep to floats in the range [-1, 1].
- void ReadTimeStep(int t, double* output) const;
- // Adds a single timestep to floats.
- void AddTimeStep(int t, double* inout) const;
- // Adds part of a single timestep to floats.
- void AddTimeStepPart(int t, int offset, int num_features, float* inout) const;
- // Writes a single timestep from floats in the range [-1, 1].
- void WriteTimeStep(int t, const double* input);
- // Writes a single timestep from floats in the range [-1, 1] writing only
- // num_features elements of input to (*this)[t], starting at offset.
- void WriteTimeStepPart(int t, int offset, int num_features,
- const double* input);
- // Maxpools a single time step from src.
- void MaxpoolTimeStep(int dest_t, const NetworkIO& src, int src_t,
- int* max_line);
- // Runs maxpool backward, using maxes to index timesteps in *this.
- void MaxpoolBackward(const NetworkIO& fwd,
- const GENERIC_2D_ARRAY<int>& maxes);
- // Returns the min over time of the maxes over features of the outputs.
- float MinOfMaxes() const;
- // Returns the min over time.
- float Max() const { return int_mode_ ? i_.Max() : f_.Max(); }
- // Computes combined results for a combiner that chooses between an existing
- // input and itself, with an additional output to indicate the choice.
- void CombineOutputs(const NetworkIO& base_output,
- const NetworkIO& combiner_output);
- // Computes deltas for a combiner that chooses between 2 sets of inputs.
- void ComputeCombinerDeltas(const NetworkIO& fwd_deltas,
- const NetworkIO& base_output);
- // Copies the array checking that the types match.
- void CopyAll(const NetworkIO& src);
- // Adds the array to a float array, with scaling to [-1, 1] if the src is int.
- void AddAllToFloat(const NetworkIO& src);
- // Subtracts the array from a float array. src must also be float.
- void SubtractAllFromFloat(const NetworkIO& src);
- // Copies src to *this, with maxabs normalization to match scale.
- void CopyWithNormalization(const NetworkIO& src, const NetworkIO& scale);
- // Multiplies the float data by the given factor.
- void ScaleFloatBy(float factor) { f_ *= factor; }
- // Copies src to *this with independent reversal of the y dimension.
- void CopyWithYReversal(const NetworkIO& src);
- // Copies src to *this with independent reversal of the x dimension.
- void CopyWithXReversal(const NetworkIO& src);
- // Copies src to *this with independent transpose of the x and y dimensions.
- void CopyWithXYTranspose(const NetworkIO& src);
- // Copies src to *this, at the given feature_offset, returning the total
- // feature offset after the copy. Multiple calls will stack outputs from
- // multiple sources in feature space.
- int CopyPacking(const NetworkIO& src, int feature_offset);
- // Opposite of CopyPacking, fills *this with a part of src, starting at
- // feature_offset, and picking num_features. Resizes *this to match.
- void CopyUnpacking(const NetworkIO& src, int feature_offset,
- int num_features);
- // Transposes the float part of *this into dest.
- void Transpose(TransposedArray* dest) const;
- // Clips the content of a single time-step to +/-range.
- void ClipVector(int t, float range);
- // Applies Func to timestep t of *this (u) and multiplies the result by v
- // component-wise, putting the product in *product.
- // *this and v may be int or float, but must match. The outputs are double.
- template <class Func>
- void FuncMultiply(const NetworkIO& v_io, int t, double* product) {
- Func f;
- ASSERT_HOST(!int_mode_);
- ASSERT_HOST(!v_io.int_mode_);
- int dim = f_.dim2();
- if (int_mode_) {
- const int8_t* u = i_[t];
- const int8_t* v = v_io.i_[t];
- for (int i = 0; i < dim; ++i) {
- product[i] = f(u[i] / static_cast<double>(INT8_MAX)) * v[i] /
- static_cast<double>(INT8_MAX);
- }
- } else {
- const float* u = f_[t];
- const float* v = v_io.f_[t];
- for (int i = 0; i < dim; ++i) {
- product[i] = f(u[i]) * v[i];
- }
- }
- }
- // Applies Func to *this (u) at u_t, and multiplies the result by v[v_t] * w,
- // component-wise, putting the product in *product.
- // All NetworkIOs are assumed to be float.
- template <class Func>
- void FuncMultiply3(int u_t, const NetworkIO& v_io, int v_t, const double* w,
- double* product) const {
- ASSERT_HOST(!int_mode_);
- ASSERT_HOST(!v_io.int_mode_);
- Func f;
- const float* u = f_[u_t];
- const float* v = v_io.f_[v_t];
- int dim = f_.dim2();
- for (int i = 0; i < dim; ++i) {
- product[i] = f(u[i]) * v[i] * w[i];
- }
- }
- // Applies Func to *this (u) at u_t, and multiplies the result by v[v_t] * w,
- // component-wise, adding the product to *product.
- // All NetworkIOs are assumed to be float.
- template <class Func>
- void FuncMultiply3Add(const NetworkIO& v_io, int t, const double* w,
- double* product) const {
- ASSERT_HOST(!int_mode_);
- ASSERT_HOST(!v_io.int_mode_);
- Func f;
- const float* u = f_[t];
- const float* v = v_io.f_[t];
- int dim = f_.dim2();
- for (int i = 0; i < dim; ++i) {
- product[i] += f(u[i]) * v[i] * w[i];
- }
- }
- // Applies Func1 to *this (u), Func2 to v, and multiplies the result by w,
- // component-wise, putting the product in product, all at timestep t, except
- // w, which is a simple array. All NetworkIOs are assumed to be float.
- template <class Func1, class Func2>
- void Func2Multiply3(const NetworkIO& v_io, int t, const double* w,
- double* product) const {
- ASSERT_HOST(!int_mode_);
- ASSERT_HOST(!v_io.int_mode_);
- Func1 f;
- Func2 g;
- const float* u = f_[t];
- const float* v = v_io.f_[t];
- int dim = f_.dim2();
- for (int i = 0; i < dim; ++i) {
- product[i] = f(u[i]) * g(v[i]) * w[i];
- }
- }
- private:
- // Returns the padding required for the given number of features in order
- // for the SIMD operations to be safe.
- static int GetPadding(int num_features);
- // Choice of float vs 8 bit int for data.
- GENERIC_2D_ARRAY<float> f_;
- GENERIC_2D_ARRAY<int8_t> i_;
- // Which of f_ and i_ are we actually using.
- bool int_mode_;
- // Stride for 2d input data.
- StrideMap stride_map_;
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_NETWORKIO_H_
|