| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161 |
- ///////////////////////////////////////////////////////////////////////
- // File: networkbuilder.h
- // Description: Class to parse the network description language and
- // build a corresponding network.
- // Author: Ray Smith
- // Created: Wed Jul 16 18:35:38 PST 2014
- //
- // (C) Copyright 2014, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_NETWORKBUILDER_H_
- #define TESSERACT_LSTM_NETWORKBUILDER_H_
- #include "static_shape.h"
- #include "stridemap.h"
- class STRING;
- class UNICHARSET;
- namespace tesseract {
- class Input;
- class Network;
- class Parallel;
- class TRand;
- class NetworkBuilder {
- public:
- explicit NetworkBuilder(int num_softmax_outputs)
- : num_softmax_outputs_(num_softmax_outputs) {}
- // Builds a network with a network_spec in the network description
- // language, to recognize a character set of num_outputs size.
- // If append_index is non-negative, then *network must be non-null and the
- // given network_spec will be appended to *network AFTER append_index, with
- // the top of the input *network discarded.
- // Note that network_spec is call by value to allow a non-const char* pointer
- // into the string for BuildFromString.
- // net_flags control network behavior according to the NetworkFlags enum.
- // The resulting network is returned via **network.
- // Returns false if something failed.
- static bool InitNetwork(int num_outputs, STRING network_spec,
- int append_index, int net_flags, float weight_range,
- TRand* randomizer, Network** network);
- // Parses the given string and returns a network according to the following
- // language:
- // ============ Syntax of description below: ============
- // <d> represents a number.
- // <net> represents any single network element, including (recursively) a
- // [...] series or (...) parallel construct.
- // (s|t|r|l|m) (regex notation) represents a single required letter.
- // NOTE THAT THROUGHOUT, x and y are REVERSED from conventional mathematics,
- // to use the same convention as Tensor Flow. The reason TF adopts this
- // convention is to eliminate the need to transpose images on input, since
- // adjacent memory locations in images increase x and then y, while adjacent
- // memory locations in tensors in TF, and NetworkIO in tesseract increase the
- // rightmost index first, then the next-left and so-on, like C arrays.
- // ============ INPUTS ============
- // <b>,<h>,<w>,<d> A batch of b images with height h, width w, and depth d.
- // b, h and/or w may be zero, to indicate variable size. Some network layer
- // (summarizing LSTM) must be used to make a variable h known.
- // d may be 1 for greyscale, 3 for color.
- // NOTE that throughout the constructed network, the inputs/outputs are all of
- // the same [batch,height,width,depth] dimensions, even if a different size.
- // ============ PLUMBING ============
- // [...] Execute ... networks in series (layers).
- // (...) Execute ... networks in parallel, with their output depths added.
- // R<d><net> Execute d replicas of net in parallel, with their output depths
- // added.
- // Rx<net> Execute <net> with x-dimension reversal.
- // Ry<net> Execute <net> with y-dimension reversal.
- // S<y>,<x> Rescale 2-D input by shrink factor x,y, rearranging the data by
- // increasing the depth of the input by factor xy.
- // Mp<y>,<x> Maxpool the input, reducing the size by an (x,y) rectangle.
- // ============ FUNCTIONAL UNITS ============
- // C(s|t|r|l|m)<y>,<x>,<d> Convolves using a (x,y) window, with no shrinkage,
- // random infill, producing d outputs, then applies a non-linearity:
- // s: Sigmoid, t: Tanh, r: Relu, l: Linear, m: Softmax.
- // F(s|t|r|l|m)<d> Truly fully-connected with s|t|r|l|m non-linearity and d
- // outputs. Connects to every x,y,depth position of the input, reducing
- // height, width to 1, producing a single <d> vector as the output.
- // Input height and width must be constant.
- // For a sliding-window linear or non-linear map that connects just to the
- // input depth, and leaves the input image size as-is, use a 1x1 convolution
- // eg. Cr1,1,64 instead of Fr64.
- // L(f|r|b)(x|y)[s]<n> LSTM cell with n states/outputs.
- // The LSTM must have one of:
- // f runs the LSTM forward only.
- // r runs the LSTM reversed only.
- // b runs the LSTM bidirectionally.
- // It will operate on either the x- or y-dimension, treating the other
- // dimension independently (as if part of the batch).
- // s (optional) summarizes the output in the requested dimension,
- // outputting only the final step, collapsing the dimension to a
- // single element.
- // LS<n> Forward-only LSTM cell in the x-direction, with built-in Softmax.
- // LE<n> Forward-only LSTM cell in the x-direction, with built-in softmax,
- // with binary Encoding.
- // L2xy<n> Full 2-d LSTM operating in quad-directions (bidi in x and y) and
- // all the output depths added.
- // ============ OUTPUTS ============
- // The network description must finish with an output specification:
- // O(2|1|0)(l|s|c)<n> output layer with n classes
- // 2 (heatmap) Output is a 2-d vector map of the input (possibly at
- // different scale).
- // 1 (sequence) Output is a 1-d sequence of vector values.
- // 0 (category) Output is a 0-d single vector value.
- // l uses a logistic non-linearity on the output, allowing multiple
- // hot elements in any output vector value.
- // s uses a softmax non-linearity, with one-hot output in each value.
- // c uses a softmax with CTC. Can only be used with s (sequence).
- // NOTE1: Only O1s and O1c are currently supported.
- // NOTE2: n is totally ignored, and for compatibility purposes only. The
- // output number of classes is obtained automatically from the
- // unicharset.
- Network* BuildFromString(const StaticShape& input_shape, char** str);
- private:
- // Parses an input specification and returns the result, which may include a
- // series.
- Network* ParseInput(char** str);
- // Parses a sequential series of networks, defined by [<net><net>...].
- Network* ParseSeries(const StaticShape& input_shape, Input* input_layer,
- char** str);
- // Parses a parallel set of networks, defined by (<net><net>...).
- Network* ParseParallel(const StaticShape& input_shape, char** str);
- // Parses a network that begins with 'R'.
- Network* ParseR(const StaticShape& input_shape, char** str);
- // Parses a network that begins with 'S'.
- Network* ParseS(const StaticShape& input_shape, char** str);
- // Parses a network that begins with 'C'.
- Network* ParseC(const StaticShape& input_shape, char** str);
- // Parses a network that begins with 'M'.
- Network* ParseM(const StaticShape& input_shape, char** str);
- // Parses an LSTM network, either individual, bi- or quad-directional.
- Network* ParseLSTM(const StaticShape& input_shape, char** str);
- // Builds a set of 4 lstms with t and y reversal, running in true parallel.
- static Network* BuildLSTMXYQuad(int num_inputs, int num_states);
- // Parses a Fully connected network.
- Network* ParseFullyConnected(const StaticShape& input_shape, char** str);
- // Parses an Output spec.
- Network* ParseOutput(const StaticShape& input_shape, char** str);
- private:
- int num_softmax_outputs_;
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_NETWORKBUILDER_H_
|