| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310 |
- ///////////////////////////////////////////////////////////////////////
- // File: network.h
- // Description: Base class for neural network implementations.
- // Author: Ray Smith
- //
- // (C) Copyright 2013, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_NETWORK_H_
- #define TESSERACT_LSTM_NETWORK_H_
- #include <cstdio>
- #include <cmath>
- #include "genericvector.h"
- #include "helpers.h"
- #include "matrix.h"
- #include "networkio.h"
- #include "serialis.h"
- #include "static_shape.h"
- #include "tprintf.h"
- struct Pix;
- class ScrollView;
- class TBOX;
- namespace tesseract {
- class ImageData;
- class NetworkScratch;
- // Enum to store the run-time type of a Network. Keep in sync with kTypeNames.
- enum NetworkType {
- NT_NONE, // The naked base class.
- NT_INPUT, // Inputs from an image.
- // Plumbing networks combine other networks or rearrange the inputs.
- NT_CONVOLVE, // Duplicates inputs in a sliding window neighborhood.
- NT_MAXPOOL, // Chooses the max result from a rectangle.
- NT_PARALLEL, // Runs networks in parallel.
- NT_REPLICATED, // Runs identical networks in parallel.
- NT_PAR_RL_LSTM, // Runs LTR and RTL LSTMs in parallel.
- NT_PAR_UD_LSTM, // Runs Up and Down LSTMs in parallel.
- NT_PAR_2D_LSTM, // Runs 4 LSTMs in parallel.
- NT_SERIES, // Executes a sequence of layers.
- NT_RECONFIG, // Scales the time/y size but makes the output deeper.
- NT_XREVERSED, // Reverses the x direction of the inputs/outputs.
- NT_YREVERSED, // Reverses the y-direction of the inputs/outputs.
- NT_XYTRANSPOSE, // Transposes x and y (for just a single op).
- // Functional networks actually calculate stuff.
- NT_LSTM, // Long-Short-Term-Memory block.
- NT_LSTM_SUMMARY, // LSTM that only keeps its last output.
- NT_LOGISTIC, // Fully connected logistic nonlinearity.
- NT_POSCLIP, // Fully connected rect lin version of logistic.
- NT_SYMCLIP, // Fully connected rect lin version of tanh.
- NT_TANH, // Fully connected with tanh nonlinearity.
- NT_RELU, // Fully connected with rectifier nonlinearity.
- NT_LINEAR, // Fully connected with no nonlinearity.
- NT_SOFTMAX, // Softmax uses exponential normalization, with CTC.
- NT_SOFTMAX_NO_CTC, // Softmax uses exponential normalization, no CTC.
- // The SOFTMAX LSTMs both have an extra softmax layer on top, but inside, with
- // the outputs fed back to the input of the LSTM at the next timestep.
- // The ENCODED version binary encodes the softmax outputs, providing log2 of
- // the number of outputs as additional inputs, and the other version just
- // provides all the softmax outputs as additional inputs.
- NT_LSTM_SOFTMAX, // 1-d LSTM with built-in fully connected softmax.
- NT_LSTM_SOFTMAX_ENCODED, // 1-d LSTM with built-in binary encoded softmax.
- // A TensorFlow graph encapsulated as a Tesseract network.
- NT_TENSORFLOW,
- NT_COUNT // Array size.
- };
- // Enum of Network behavior flags. Can in theory be set for each individual
- // network element.
- enum NetworkFlags {
- // Network forward/backprop behavior.
- NF_LAYER_SPECIFIC_LR = 64, // Separate learning rate for each layer.
- NF_ADAM = 128, // Weight-specific learning rate.
- };
- // State of training and desired state used in SetEnableTraining.
- enum TrainingState {
- // Valid states of training_.
- TS_DISABLED, // Disabled permanently.
- TS_ENABLED, // Enabled for backprop and to write a training dump.
- // Re-enable from ANY disabled state.
- TS_TEMP_DISABLE, // Temporarily disabled to write a recognition dump.
- // Valid only for SetEnableTraining.
- TS_RE_ENABLE, // Re-Enable from TS_TEMP_DISABLE, but not TS_DISABLED.
- };
- // Base class for network types. Not quite an abstract base class, but almost.
- // Most of the time no isolated Network exists, except prior to
- // deserialization.
- class Network {
- public:
- Network();
- Network(NetworkType type, const STRING& name, int ni, int no);
- virtual ~Network() = default;
- // Accessors.
- NetworkType type() const {
- return type_;
- }
- bool IsTraining() const { return training_ == TS_ENABLED; }
- bool needs_to_backprop() const {
- return needs_to_backprop_;
- }
- int num_weights() const { return num_weights_; }
- int NumInputs() const {
- return ni_;
- }
- int NumOutputs() const {
- return no_;
- }
- // Returns the required shape input to the network.
- virtual StaticShape InputShape() const {
- StaticShape result;
- return result;
- }
- // Returns the shape output from the network given an input shape (which may
- // be partially unknown ie zero).
- virtual StaticShape OutputShape(const StaticShape& input_shape) const {
- StaticShape result(input_shape);
- result.set_depth(no_);
- return result;
- }
- const STRING& name() const {
- return name_;
- }
- virtual STRING spec() const {
- return "?";
- }
- bool TestFlag(NetworkFlags flag) const {
- return (network_flags_ & flag) != 0;
- }
- // Initialization and administrative functions that are mostly provided
- // by Plumbing.
- // Returns true if the given type is derived from Plumbing, and thus contains
- // multiple sub-networks that can have their own learning rate.
- virtual bool IsPlumbingType() const { return false; }
- // Suspends/Enables/Permanently disables training by setting the training_
- // flag. Serialize and DeSerialize only operate on the run-time data if state
- // is TS_DISABLED or TS_TEMP_DISABLE. Specifying TS_TEMP_DISABLE will
- // temporarily disable layers in state TS_ENABLED, allowing a trainer to
- // serialize as if it were a recognizer.
- // TS_RE_ENABLE will re-enable layers that were previously in any disabled
- // state. If in TS_TEMP_DISABLE then the flag is just changed, but if in
- // TS_DISABLED, the deltas in the weight matrices are reinitialized so that a
- // recognizer can be converted back to a trainer.
- virtual void SetEnableTraining(TrainingState state);
- // Sets flags that control the action of the network. See NetworkFlags enum
- // for bit values.
- virtual void SetNetworkFlags(uint32_t flags);
- // Sets up the network for training. Initializes weights using weights of
- // scale `range` picked according to the random number generator `randomizer`.
- // Note that randomizer is a borrowed pointer that should outlive the network
- // and should not be deleted by any of the networks.
- // Returns the number of weights initialized.
- virtual int InitWeights(float range, TRand* randomizer);
- // Changes the number of outputs to the outside world to the size of the given
- // code_map. Recursively searches the entire network for Softmax layers that
- // have exactly old_no outputs, and operates only on those, leaving all others
- // unchanged. This enables networks with multiple output layers to get all
- // their softmaxes updated, but if an internal layer, uses one of those
- // softmaxes for input, then the inputs will effectively be scrambled.
- // TODO(rays) Fix this before any such network is implemented.
- // The softmaxes are resized by copying the old weight matrix entries for each
- // output from code_map[output] where non-negative, and uses the mean (over
- // all outputs) of the existing weights for all outputs with negative code_map
- // entries. Returns the new number of weights.
- virtual int RemapOutputs(int old_no, const std::vector<int>& code_map) {
- return 0;
- }
- // Converts a float network to an int network.
- virtual void ConvertToInt() {}
- // Provides a pointer to a TRand for any networks that care to use it.
- // Note that randomizer is a borrowed pointer that should outlive the network
- // and should not be deleted by any of the networks.
- virtual void SetRandomizer(TRand* randomizer);
- // Sets needs_to_backprop_ to needs_backprop and returns true if
- // needs_backprop || any weights in this network so the next layer forward
- // can be told to produce backprop for this layer if needed.
- virtual bool SetupNeedsBackprop(bool needs_backprop);
- // Returns the most recent reduction factor that the network applied to the
- // time sequence. Assumes that any 2-d is already eliminated. Used for
- // scaling bounding boxes of truth data and calculating result bounding boxes.
- // WARNING: if GlobalMinimax is used to vary the scale, this will return
- // the last used scale factor. Call it before any forward, and it will return
- // the minimum scale factor of the paths through the GlobalMinimax.
- virtual int XScaleFactor() const {
- return 1;
- }
- // Provides the (minimum) x scale factor to the network (of interest only to
- // input units) so they can determine how to scale bounding boxes.
- virtual void CacheXScaleFactor(int factor) {}
- // Provides debug output on the weights.
- virtual void DebugWeights() = 0;
- // Writes to the given file. Returns false in case of error.
- // Should be overridden by subclasses, but called by their Serialize.
- virtual bool Serialize(TFile* fp) const;
- // Reads from the given file. Returns false in case of error.
- // Should be overridden by subclasses, but NOT called by their DeSerialize.
- virtual bool DeSerialize(TFile* fp) = 0;
- public:
- // Updates the weights using the given learning rate, momentum and adam_beta.
- // num_samples is used in the adam computation iff use_adam_ is true.
- virtual void Update(float learning_rate, float momentum, float adam_beta,
- int num_samples) {}
- // Sums the products of weight updates in *this and other, splitting into
- // positive (same direction) in *same and negative (different direction) in
- // *changed.
- virtual void CountAlternators(const Network& other, double* same,
- double* changed) const {}
- // Reads from the given file. Returns nullptr in case of error.
- // Determines the type of the serialized class and calls its DeSerialize
- // on a new object of the appropriate type, which is returned.
- static Network* CreateFromFile(TFile* fp);
- // Runs forward propagation of activations on the input line.
- // Note that input and output are both 2-d arrays.
- // The 1st index is the time element. In a 1-d network, it might be the pixel
- // position on the textline. In a 2-d network, the linearization is defined
- // by the stride_map. (See networkio.h).
- // The 2nd index of input is the network inputs/outputs, and the dimension
- // of the input must match NumInputs() of this network.
- // The output array will be resized as needed so that its 1st dimension is
- // always equal to the number of output values, and its second dimension is
- // always NumOutputs(). Note that all this detail is encapsulated away inside
- // NetworkIO, as are the internals of the scratch memory space used by the
- // network. See networkscratch.h for that.
- // If input_transpose is not nullptr, then it contains the transpose of input,
- // and the caller guarantees that it will still be valid on the next call to
- // backward. The callee is therefore at liberty to save the pointer and
- // reference it on a call to backward. This is a bit ugly, but it makes it
- // possible for a replicating parallel to calculate the input transpose once
- // instead of all the replicated networks having to do it.
- virtual void Forward(bool debug, const NetworkIO& input,
- const TransposedArray* input_transpose,
- NetworkScratch* scratch, NetworkIO* output) = 0;
- // Runs backward propagation of errors on fwdX_deltas.
- // Note that fwd_deltas and back_deltas are both 2-d arrays as with Forward.
- // Returns false if back_deltas was not set, due to there being no point in
- // propagating further backwards. Thus most complete networks will always
- // return false from Backward!
- virtual bool Backward(bool debug, const NetworkIO& fwd_deltas,
- NetworkScratch* scratch,
- NetworkIO* back_deltas) = 0;
- // === Debug image display methods. ===
- // Displays the image of the matrix to the forward window.
- void DisplayForward(const NetworkIO& matrix);
- // Displays the image of the matrix to the backward window.
- void DisplayBackward(const NetworkIO& matrix);
- // Creates the window if needed, otherwise clears it.
- static void ClearWindow(bool tess_coords, const char* window_name,
- int width, int height, ScrollView** window);
- // Displays the pix in the given window. and returns the height of the pix.
- // The pix is pixDestroyed.
- static int DisplayImage(Pix* pix, ScrollView* window);
- protected:
- // Returns a random number in [-range, range].
- double Random(double range);
- protected:
- NetworkType type_; // Type of the derived network class.
- TrainingState training_; // Are we currently training?
- bool needs_to_backprop_; // This network needs to output back_deltas.
- int32_t network_flags_; // Behavior control flags in NetworkFlags.
- int32_t ni_; // Number of input values.
- int32_t no_; // Number of output values.
- int32_t num_weights_; // Number of weights in this and sub-network.
- STRING name_; // A unique name for this layer.
- // NOT-serialized debug data.
- ScrollView* forward_win_; // Recognition debug display window.
- ScrollView* backward_win_; // Training debug display window.
- TRand* randomizer_; // Random number generator.
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_NETWORK_H_
|