| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489 |
- ///////////////////////////////////////////////////////////////////////
- // File: lstmtrainer.h
- // Description: Top-level line trainer class for LSTM-based networks.
- // Author: Ray Smith
- // Created: Fri May 03 09:07:06 PST 2013
- //
- // (C) Copyright 2013, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_LSTMTRAINER_H_
- #define TESSERACT_LSTM_LSTMTRAINER_H_
- #include "imagedata.h"
- #include "lstmrecognizer.h"
- #include "rect.h"
- #include "tesscallback.h"
- namespace tesseract {
- class LSTM;
- class LSTMTrainer;
- class Parallel;
- class Reversed;
- class Softmax;
- class Series;
- // Enum for the types of errors that are counted.
- enum ErrorTypes {
- ET_RMS, // RMS activation error.
- ET_DELTA, // Number of big errors in deltas.
- ET_WORD_RECERR, // Output text string word recall error.
- ET_CHAR_ERROR, // Output text string total char error.
- ET_SKIP_RATIO, // Fraction of samples skipped.
- ET_COUNT // For array sizing.
- };
- // Enum for the trainability_ flags.
- enum Trainability {
- TRAINABLE, // Non-zero delta error.
- PERFECT, // Zero delta error.
- UNENCODABLE, // Not trainable due to coding/alignment trouble.
- HI_PRECISION_ERR, // Hi confidence disagreement.
- NOT_BOXED, // Early in training and has no character boxes.
- };
- // Enum to define the amount of data to get serialized.
- enum SerializeAmount {
- LIGHT, // Minimal data for remote training.
- NO_BEST_TRAINER, // Save an empty vector in place of best_trainer_.
- FULL, // All data including best_trainer_.
- };
- // Enum to indicate how the sub_trainer_ training went.
- enum SubTrainerResult {
- STR_NONE, // Did nothing as not good enough.
- STR_UPDATED, // Subtrainer was updated, but didn't replace *this.
- STR_REPLACED // Subtrainer replaced *this.
- };
- class LSTMTrainer;
- // Function to restore the trainer state from a given checkpoint.
- // Returns false on failure.
- typedef TessResultCallback2<bool, const GenericVector<char>&, LSTMTrainer*>*
- CheckPointReader;
- // Function to save a checkpoint of the current trainer state.
- // Returns false on failure. SerializeAmount determines the amount of the
- // trainer to serialize, typically used for saving the best state.
- typedef TessResultCallback3<bool, SerializeAmount, const LSTMTrainer*,
- GenericVector<char>*>* CheckPointWriter;
- // Function to compute and record error rates on some external test set(s).
- // Args are: iteration, mean errors, model, training stage.
- // Returns a STRING containing logging information about the tests.
- typedef TessResultCallback4<STRING, int, const double*, const TessdataManager&,
- int>* TestCallback;
- // Trainer class for LSTM networks. Most of the effort is in creating the
- // ideal target outputs from the transcription. A box file is used if it is
- // available, otherwise estimates of the char widths from the unicharset are
- // used to guide a DP search for the best fit to the transcription.
- class LSTMTrainer : public LSTMRecognizer {
- public:
- LSTMTrainer();
- // Callbacks may be null, in which case defaults are used.
- LSTMTrainer(FileReader file_reader, FileWriter file_writer,
- CheckPointReader checkpoint_reader,
- CheckPointWriter checkpoint_writer,
- const char* model_base, const char* checkpoint_name,
- int debug_interval, int64_t max_memory);
- virtual ~LSTMTrainer();
- // Tries to deserialize a trainer from the given file and silently returns
- // false in case of failure. If old_traineddata is not null, then it is
- // assumed that the character set is to be re-mapped from old_traineddata to
- // the new, with consequent change in weight matrices etc.
- bool TryLoadingCheckpoint(const char* filename, const char* old_traineddata);
- // Initializes the character set encode/decode mechanism directly from a
- // previously setup traineddata containing dawgs, UNICHARSET and
- // UnicharCompress. Note: Call before InitNetwork!
- void InitCharSet(const std::string& traineddata_path) {
- ASSERT_HOST(mgr_.Init(traineddata_path.c_str()));
- InitCharSet();
- }
- void InitCharSet(const TessdataManager& mgr) {
- mgr_ = mgr;
- InitCharSet();
- }
- // Initializes the trainer with a network_spec in the network description
- // net_flags control network behavior according to the NetworkFlags enum.
- // There isn't really much difference between them - only where the effects
- // are implemented.
- // For other args see NetworkBuilder::InitNetwork.
- // Note: Be sure to call InitCharSet before InitNetwork!
- bool InitNetwork(const STRING& network_spec, int append_index, int net_flags,
- float weight_range, float learning_rate, float momentum,
- float adam_beta);
- // Initializes a trainer from a serialized TFNetworkModel proto.
- // Returns the global step of TensorFlow graph or 0 if failed.
- // Building a compatible TF graph: See tfnetwork.proto.
- int InitTensorFlowNetwork(const std::string& tf_proto);
- // Resets all the iteration counters for fine tuning or training a head,
- // where we want the error reporting to reset.
- void InitIterations();
- // Accessors.
- double ActivationError() const {
- return error_rates_[ET_DELTA];
- }
- double CharError() const { return error_rates_[ET_CHAR_ERROR]; }
- const double* error_rates() const {
- return error_rates_;
- }
- double best_error_rate() const {
- return best_error_rate_;
- }
- int best_iteration() const {
- return best_iteration_;
- }
- int learning_iteration() const { return learning_iteration_; }
- int32_t improvement_steps() const { return improvement_steps_; }
- void set_perfect_delay(int delay) { perfect_delay_ = delay; }
- const GenericVector<char>& best_trainer() const { return best_trainer_; }
- // Returns the error that was just calculated by PrepareForBackward.
- double NewSingleError(ErrorTypes type) const {
- return error_buffers_[type][training_iteration() % kRollingBufferSize_];
- }
- // Returns the error that was just calculated by TrainOnLine. Since
- // TrainOnLine rolls the error buffers, this is one further back than
- // NewSingleError.
- double LastSingleError(ErrorTypes type) const {
- return error_buffers_[type]
- [(training_iteration() + kRollingBufferSize_ - 1) %
- kRollingBufferSize_];
- }
- const DocumentCache& training_data() const {
- return training_data_;
- }
- DocumentCache* mutable_training_data() { return &training_data_; }
- // If the training sample is usable, grid searches for the optimal
- // dict_ratio/cert_offset, and returns the results in a string of space-
- // separated triplets of ratio,offset=worderr.
- Trainability GridSearchDictParams(
- const ImageData* trainingdata, int iteration, double min_dict_ratio,
- double dict_ratio_step, double max_dict_ratio, double min_cert_offset,
- double cert_offset_step, double max_cert_offset, STRING* results);
- // Provides output on the distribution of weight values.
- void DebugNetwork();
- // Loads a set of lstmf files that were created using the lstm.train config to
- // tesseract into memory ready for training. Returns false if nothing was
- // loaded.
- bool LoadAllTrainingData(const GenericVector<STRING>& filenames,
- CachingStrategy cache_strategy,
- bool randomly_rotate);
- // Keeps track of best and locally worst error rate, using internally computed
- // values. See MaintainCheckpointsSpecific for more detail.
- bool MaintainCheckpoints(TestCallback tester, STRING* log_msg);
- // Keeps track of best and locally worst error_rate (whatever it is) and
- // launches tests using rec_model, when a new min or max is reached.
- // Writes checkpoints using train_model at appropriate times and builds and
- // returns a log message to indicate progress. Returns false if nothing
- // interesting happened.
- bool MaintainCheckpointsSpecific(int iteration,
- const GenericVector<char>* train_model,
- const GenericVector<char>* rec_model,
- TestCallback tester, STRING* log_msg);
- // Builds a string containing a progress message with current error rates.
- void PrepareLogMsg(STRING* log_msg) const;
- // Appends <intro_str> iteration learning_iteration()/training_iteration()/
- // sample_iteration() to the log_msg.
- void LogIterations(const char* intro_str, STRING* log_msg) const;
- // TODO(rays) Add curriculum learning.
- // Returns true and increments the training_stage_ if the error rate has just
- // passed through the given threshold for the first time.
- bool TransitionTrainingStage(float error_threshold);
- // Returns the current training stage.
- int CurrentTrainingStage() const { return training_stage_; }
- // Writes to the given file. Returns false in case of error.
- bool Serialize(SerializeAmount serialize_amount,
- const TessdataManager* mgr, TFile* fp) const;
- // Reads from the given file. Returns false in case of error.
- bool DeSerialize(const TessdataManager* mgr, TFile* fp);
- // De-serializes the saved best_trainer_ into sub_trainer_, and adjusts the
- // learning rates (by scaling reduction, or layer specific, according to
- // NF_LAYER_SPECIFIC_LR).
- void StartSubtrainer(STRING* log_msg);
- // While the sub_trainer_ is behind the current training iteration and its
- // training error is at least kSubTrainerMarginFraction better than the
- // current training error, trains the sub_trainer_, and returns STR_UPDATED if
- // it did anything. If it catches up, and has a better error rate than the
- // current best, as well as a margin over the current error rate, then the
- // trainer in *this is replaced with sub_trainer_, and STR_REPLACED is
- // returned. STR_NONE is returned if the subtrainer wasn't good enough to
- // receive any training iterations.
- SubTrainerResult UpdateSubtrainer(STRING* log_msg);
- // Reduces network learning rates, either for everything, or for layers
- // independently, according to NF_LAYER_SPECIFIC_LR.
- void ReduceLearningRates(LSTMTrainer* samples_trainer, STRING* log_msg);
- // Considers reducing the learning rate independently for each layer down by
- // factor(<1), or leaving it the same, by double-training the given number of
- // samples and minimizing the amount of changing of sign of weight updates.
- // Even if it looks like all weights should remain the same, an adjustment
- // will be made to guarantee a different result when reverting to an old best.
- // Returns the number of layer learning rates that were reduced.
- int ReduceLayerLearningRates(double factor, int num_samples,
- LSTMTrainer* samples_trainer);
- // Converts the string to integer class labels, with appropriate null_char_s
- // in between if not in SimpleTextOutput mode. Returns false on failure.
- bool EncodeString(const STRING& str, GenericVector<int>* labels) const {
- return EncodeString(str, GetUnicharset(), IsRecoding() ? &recoder_ : nullptr,
- SimpleTextOutput(), null_char_, labels);
- }
- // Static version operates on supplied unicharset, encoder, simple_text.
- static bool EncodeString(const STRING& str, const UNICHARSET& unicharset,
- const UnicharCompress* recoder, bool simple_text,
- int null_char, GenericVector<int>* labels);
- // Performs forward-backward on the given trainingdata.
- // Returns the sample that was used or nullptr if the next sample was deemed
- // unusable. samples_trainer could be this or an alternative trainer that
- // holds the training samples.
- const ImageData* TrainOnLine(LSTMTrainer* samples_trainer, bool batch) {
- int sample_index = sample_iteration();
- const ImageData* image =
- samples_trainer->training_data_.GetPageBySerial(sample_index);
- if (image != nullptr) {
- Trainability trainable = TrainOnLine(image, batch);
- if (trainable == UNENCODABLE || trainable == NOT_BOXED) {
- return nullptr; // Sample was unusable.
- }
- } else {
- ++sample_iteration_;
- }
- return image;
- }
- Trainability TrainOnLine(const ImageData* trainingdata, bool batch);
- // Prepares the ground truth, runs forward, and prepares the targets.
- // Returns a Trainability enum to indicate the suitability of the sample.
- Trainability PrepareForBackward(const ImageData* trainingdata,
- NetworkIO* fwd_outputs, NetworkIO* targets);
- // Writes the trainer to memory, so that the current training state can be
- // restored. *this must always be the master trainer that retains the only
- // copy of the training data and language model. trainer is the model that is
- // actually serialized.
- bool SaveTrainingDump(SerializeAmount serialize_amount,
- const LSTMTrainer* trainer,
- GenericVector<char>* data) const;
- // Reads previously saved trainer from memory. *this must always be the
- // master trainer that retains the only copy of the training data and
- // language model. trainer is the model that is restored.
- bool ReadTrainingDump(const GenericVector<char>& data,
- LSTMTrainer* trainer) const {
- if (data.empty()) return false;
- return ReadSizedTrainingDump(&data[0], data.size(), trainer);
- }
- bool ReadSizedTrainingDump(const char* data, int size,
- LSTMTrainer* trainer) const {
- return trainer->ReadLocalTrainingDump(&mgr_, data, size);
- }
- // Restores the model to *this.
- bool ReadLocalTrainingDump(const TessdataManager* mgr, const char* data,
- int size);
- // Sets up the data for MaintainCheckpoints from a light ReadTrainingDump.
- void SetupCheckpointInfo();
- // Writes the full recognition traineddata to the given filename.
- bool SaveTraineddata(const STRING& filename);
- // Writes the recognizer to memory, so that it can be used for testing later.
- void SaveRecognitionDump(GenericVector<char>* data) const;
- // Returns a suitable filename for a training dump, based on the model_base_,
- // the iteration and the error rates.
- STRING DumpFilename() const;
- // Fills the whole error buffer of the given type with the given value.
- void FillErrorBuffer(double new_error, ErrorTypes type);
- // Helper generates a map from each current recoder_ code (ie softmax index)
- // to the corresponding old_recoder code, or -1 if there isn't one.
- std::vector<int> MapRecoder(const UNICHARSET& old_chset,
- const UnicharCompress& old_recoder) const;
- protected:
- // Private version of InitCharSet above finishes the job after initializing
- // the mgr_ data member.
- void InitCharSet();
- // Helper computes and sets the null_char_.
- void SetNullChar();
- // Factored sub-constructor sets up reasonable default values.
- void EmptyConstructor();
- // Outputs the string and periodically displays the given network inputs
- // as an image in the given window, and the corresponding labels at the
- // corresponding x_starts.
- // Returns false if the truth string is empty.
- bool DebugLSTMTraining(const NetworkIO& inputs,
- const ImageData& trainingdata,
- const NetworkIO& fwd_outputs,
- const GenericVector<int>& truth_labels,
- const NetworkIO& outputs);
- // Displays the network targets as line a line graph.
- void DisplayTargets(const NetworkIO& targets, const char* window_name,
- ScrollView** window);
- // Builds a no-compromises target where the first positions should be the
- // truth labels and the rest is padded with the null_char_.
- bool ComputeTextTargets(const NetworkIO& outputs,
- const GenericVector<int>& truth_labels,
- NetworkIO* targets);
- // Builds a target using standard CTC. truth_labels should be pre-padded with
- // nulls wherever desired. They don't have to be between all labels.
- // outputs is input-output, as it gets clipped to minimum probability.
- bool ComputeCTCTargets(const GenericVector<int>& truth_labels,
- NetworkIO* outputs, NetworkIO* targets);
- // Computes network errors, and stores the results in the rolling buffers,
- // along with the supplied text_error.
- // Returns the delta error of the current sample (not running average.)
- double ComputeErrorRates(const NetworkIO& deltas, double char_error,
- double word_error);
- // Computes the network activation RMS error rate.
- double ComputeRMSError(const NetworkIO& deltas);
- // Computes network activation winner error rate. (Number of values that are
- // in error by >= 0.5 divided by number of time-steps.) More closely related
- // to final character error than RMS, but still directly calculable from
- // just the deltas. Because of the binary nature of the targets, zero winner
- // error is a sufficient but not necessary condition for zero char error.
- double ComputeWinnerError(const NetworkIO& deltas);
- // Computes a very simple bag of chars char error rate.
- double ComputeCharError(const GenericVector<int>& truth_str,
- const GenericVector<int>& ocr_str);
- // Computes a very simple bag of words word recall error rate.
- // NOTE that this is destructive on both input strings.
- double ComputeWordError(STRING* truth_str, STRING* ocr_str);
- // Updates the error buffer and corresponding mean of the given type with
- // the new_error.
- void UpdateErrorBuffer(double new_error, ErrorTypes type);
- // Rolls error buffers and reports the current means.
- void RollErrorBuffers();
- // Given that error_rate is either a new min or max, updates the best/worst
- // error rates, and record of progress.
- STRING UpdateErrorGraph(int iteration, double error_rate,
- const GenericVector<char>& model_data,
- TestCallback tester);
- protected:
- // Alignment display window.
- ScrollView* align_win_;
- // CTC target display window.
- ScrollView* target_win_;
- // CTC output display window.
- ScrollView* ctc_win_;
- // Reconstructed image window.
- ScrollView* recon_win_;
- // How often to display a debug image.
- int debug_interval_;
- // Iteration at which the last checkpoint was dumped.
- int checkpoint_iteration_;
- // Basename of files to save best models to.
- STRING model_base_;
- // Checkpoint filename.
- STRING checkpoint_name_;
- // Training data.
- bool randomly_rotate_;
- DocumentCache training_data_;
- // Name to use when saving best_trainer_.
- STRING best_model_name_;
- // Number of available training stages.
- int num_training_stages_;
- // Checkpointing callbacks.
- FileReader file_reader_;
- FileWriter file_writer_;
- // TODO(rays) These are pointers, and must be deleted. Switch to unique_ptr
- // when we can commit to c++11.
- CheckPointReader checkpoint_reader_;
- CheckPointWriter checkpoint_writer_;
- // ===Serialized data to ensure that a restart produces the same results.===
- // These members are only serialized when serialize_amount != LIGHT.
- // Best error rate so far.
- double best_error_rate_;
- // Snapshot of all error rates at best_iteration_.
- double best_error_rates_[ET_COUNT];
- // Iteration of best_error_rate_.
- int best_iteration_;
- // Worst error rate since best_error_rate_.
- double worst_error_rate_;
- // Snapshot of all error rates at worst_iteration_.
- double worst_error_rates_[ET_COUNT];
- // Iteration of worst_error_rate_.
- int worst_iteration_;
- // Iteration at which the process will be thought stalled.
- int stall_iteration_;
- // Saved recognition models for computing test error for graph points.
- GenericVector<char> best_model_data_;
- GenericVector<char> worst_model_data_;
- // Saved trainer for reverting back to last known best.
- GenericVector<char> best_trainer_;
- // A subsidiary trainer running with a different learning rate until either
- // *this or sub_trainer_ hits a new best.
- LSTMTrainer* sub_trainer_;
- // Error rate at which last best model was dumped.
- float error_rate_of_last_saved_best_;
- // Current stage of training.
- int training_stage_;
- // History of best error rate against iteration. Used for computing the
- // number of steps to each 2% improvement.
- GenericVector<double> best_error_history_;
- GenericVector<int> best_error_iterations_;
- // Number of iterations since the best_error_rate_ was 2% more than it is now.
- int32_t improvement_steps_;
- // Number of iterations that yielded a non-zero delta error and thus provided
- // significant learning. learning_iteration_ <= training_iteration_.
- // learning_iteration_ is used to measure rate of learning progress.
- int learning_iteration_;
- // Saved value of sample_iteration_ before looking for the the next sample.
- int prev_sample_iteration_;
- // How often to include a PERFECT training sample in backprop.
- // A PERFECT training sample is used if the current
- // training_iteration_ > last_perfect_training_iteration_ + perfect_delay_,
- // so with perfect_delay_ == 0, all samples are used, and with
- // perfect_delay_ == 4, at most 1 in 5 samples will be perfect.
- int perfect_delay_;
- // Value of training_iteration_ at which the last PERFECT training sample
- // was used in back prop.
- int last_perfect_training_iteration_;
- // Rolling buffers storing recent training errors are indexed by
- // training_iteration % kRollingBufferSize_.
- static const int kRollingBufferSize_ = 1000;
- GenericVector<double> error_buffers_[ET_COUNT];
- // Rounded mean percent trailing training errors in the buffers.
- double error_rates_[ET_COUNT]; // RMS training error.
- // Traineddata file with optional dawgs + UNICHARSET and recoder.
- TessdataManager mgr_;
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_LSTMTRAINER_H_
|