| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- ///////////////////////////////////////////////////////////////////////
- // File: intsimdmatrix.h
- // Description: Base class for 8-bit int SIMD matrix multipliers.
- // Author: Ray Smith
- // Created: Tue Aug 15 07:37:20 PST 2017
- //
- // (C) Copyright 2017, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_ARCH_INTSIMDMATRIX_H_
- #define TESSERACT_ARCH_INTSIMDMATRIX_H_
- #include <cstdint>
- #include <vector>
- template <class T>
- class GENERIC_2D_ARRAY;
- template <typename T>
- class GenericVector;
- namespace tesseract {
- // Base class for a SIMD function to multiply a matrix by a vector, with sources
- // of 8-bit signed integer, and result in a double, after appropriate scaling.
- // Assumes a specific method of multiplication that can be applied to any size
- // and number of SIMD registers as follows:
- // int32_t results are computed with num_outputs_per_register_ in each of
- // max_output_registers_ result registers, repeatedly until it would make too
- // many results, then the number of registers is halved, and so-on down to a
- // single result register. The last calculation only outputs the required number
- // of results instead of writing beyond the bounds. Eg: matrix has 75 outputs,
- // num_outputs_per_register_ = 4, and max_output_registers_ = 8,
- // Step 1: 8x4=32 results are computed,
- // Step 2: 8x4=32 again, total 64,
- // Step 3: 2x4=8 (since 8x4 is too many, so is 4x4), total 72,
- // Step 4: 1x3, total 75.
- // Each step above is computed using a PartialFunc, which runs over the input
- // vector once. The input is read one registerful of num_inputs_per_register_
- // at a time (presumably 4x num_outputs_per_register_ since they are int8_t)
- // so the inputs MUST BE PADDED to a multiple of num_inputs_per_register_.
- // Since it is slow (on Intel at least) to horizontally add in a register,
- // provision is made to process num_inputs_per_group_ inputs at a time, with
- // the group being replicated num_input_groups_ times and multiplied by a
- // num_inputs_per_group_ by num_input_groups_ rectangle of the weights matrix.
- // This is most convenient if num_inputs_per_group_ is 4, and the product
- // sign-extends and sums 8x8=16 bit results to 32 bits, adding 4 adjacent
- // results in the process, but it doesn't have to be implemented that way.
- // The weights are re-ordered by Init() to be used sequentially by the above
- // algorithm, followed by the biases, so they can be added at the end.
- // The base class computes the base C++ implementation.
- // NOTE that, although the subclasses execute on different SIMD hardware, no
- // virtual methods are needed, as the constructor sets up everything that
- // is required to allow the base class implementation to do all the work.
- struct IntSimdMatrix {
- // Computes a reshaped copy of the weight matrix w.
- void Init(const GENERIC_2D_ARRAY<int8_t>& w,
- std::vector<int8_t>& shaped_w) const;
- // Rounds the size up to a multiple of the input register size (in int8_t).
- int RoundInputs(int size) const {
- return Roundup(size, num_inputs_per_register_);
- }
- // Rounds the size up to a multiple of the output register size (in int32_t).
- int RoundOutputs(int size) const {
- return Roundup(size, num_outputs_per_register_);
- }
- // Computes matrix.vector v = Wu.
- // u is of size W.dim2() - 1 and the output v is of size W.dim1().
- // u is imagined to have an extra element at the end with value 1, to
- // implement the bias, but it doesn't actually have it.
- // Computes the base C++ implementation.
- static void MatrixDotVector(const GENERIC_2D_ARRAY<int8_t>& w,
- const GenericVector<double>& scales,
- const int8_t* u, double* v);
- // Rounds the input up to a multiple of the given factor.
- static int Roundup(int input, int factor) {
- return (input + factor - 1) / factor * factor;
- }
- // Computes matrix.vector v = Wu.
- // u is of size W.dim2() - 1 and the output v is of size W.dim1().
- // u is imagined to have an extra element at the end with value 1, to
- // implement the bias, but it doesn't actually have it.
- // Uses an optimized implementation with partial funcs.
- // NOTE: The size of the input vector (u) must be padded using
- // RoundInputs above.
- // The input will be over-read to the extent of the padding. There are no
- // alignment requirements.
- using MatrixDotVectorFunction = void (*)(int, int, const int8_t*,
- const double*, const int8_t*,
- double*);
- MatrixDotVectorFunction matrixDotVectorFunction;
- // Number of 32 bit outputs held in each register.
- int num_outputs_per_register_;
- // Maximum number of registers that we will use to hold outputs.
- int max_output_registers_;
- // Number of 8 bit inputs in the inputs register.
- int num_inputs_per_register_;
- // Number of inputs in each weight group.
- int num_inputs_per_group_;
- // Number of groups of inputs to be broadcast.
- // num_input_groups_ = num_inputs_per_register_ / num_inputs_per_group_
- static const IntSimdMatrix* intSimdMatrix;
- static const IntSimdMatrix intSimdMatrixAVX2;
- static const IntSimdMatrix intSimdMatrixSSE;
- };
- } // namespace tesseract
- #endif // TESSERACT_ARCH_INTSIMDMATRIX_H_
|