| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137 |
- ///////////////////////////////////////////////////////////////////////
- // File: fullyconnected.h
- // Description: Simple feed-forward layer with various non-linearities.
- // Author: Ray Smith
- // Created: Wed Feb 26 14:46:06 PST 2014
- //
- // (C) Copyright 2014, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- ///////////////////////////////////////////////////////////////////////
- #ifndef TESSERACT_LSTM_FULLYCONNECTED_H_
- #define TESSERACT_LSTM_FULLYCONNECTED_H_
- #include "network.h"
- #include "networkscratch.h"
- namespace tesseract {
- // C++ Implementation of the Softmax (output) class from lstm.py.
- class FullyConnected : public Network {
- public:
- FullyConnected(const STRING& name, int ni, int no, NetworkType type);
- ~FullyConnected() override = default;
- // Returns the shape output from the network given an input shape (which may
- // be partially unknown ie zero).
- StaticShape OutputShape(const StaticShape& input_shape) const override;
- STRING spec() const override {
- STRING spec;
- if (type_ == NT_TANH)
- spec.add_str_int("Ft", no_);
- else if (type_ == NT_LOGISTIC)
- spec.add_str_int("Fs", no_);
- else if (type_ == NT_RELU)
- spec.add_str_int("Fr", no_);
- else if (type_ == NT_LINEAR)
- spec.add_str_int("Fl", no_);
- else if (type_ == NT_POSCLIP)
- spec.add_str_int("Fp", no_);
- else if (type_ == NT_SYMCLIP)
- spec.add_str_int("Fs", no_);
- else if (type_ == NT_SOFTMAX)
- spec.add_str_int("Fc", no_);
- else
- spec.add_str_int("Fm", no_);
- return spec;
- }
- // Changes the type to the given type. Used to commute a softmax to a
- // non-output type for adding on other networks.
- void ChangeType(NetworkType type) {
- type_ = type;
- }
- // Suspends/Enables training by setting the training_ flag. Serialize and
- // DeSerialize only operate on the run-time data if state is false.
- void SetEnableTraining(TrainingState state) override;
- // Sets up the network for training. Initializes weights using weights of
- // scale `range` picked according to the random number generator `randomizer`.
- int InitWeights(float range, TRand* randomizer) override;
- // Recursively searches the network for softmaxes with old_no outputs,
- // and remaps their outputs according to code_map. See network.h for details.
- int RemapOutputs(int old_no, const std::vector<int>& code_map) override;
- // Converts a float network to an int network.
- void ConvertToInt() override;
- // Provides debug output on the weights.
- void DebugWeights() override;
- // Writes to the given file. Returns false in case of error.
- bool Serialize(TFile* fp) const override;
- // Reads from the given file. Returns false in case of error.
- bool DeSerialize(TFile* fp) override;
- // Runs forward propagation of activations on the input line.
- // See Network for a detailed discussion of the arguments.
- void Forward(bool debug, const NetworkIO& input,
- const TransposedArray* input_transpose, NetworkScratch* scratch,
- NetworkIO* output) override;
- // Components of Forward so FullyConnected can be reused inside LSTM.
- void SetupForward(const NetworkIO& input,
- const TransposedArray* input_transpose);
- void ForwardTimeStep(int t, double* output_line);
- void ForwardTimeStep(const double* d_input, int t, double* output_line);
- void ForwardTimeStep(const int8_t* i_input, int t, double* output_line);
- // Runs backward propagation of errors on the deltas line.
- // See Network for a detailed discussion of the arguments.
- bool Backward(bool debug, const NetworkIO& fwd_deltas,
- NetworkScratch* scratch, NetworkIO* back_deltas) override;
- // Components of Backward so FullyConnected can be reused inside LSTM.
- void BackwardTimeStep(const NetworkIO& fwd_deltas, int t, double* curr_errors,
- TransposedArray* errors_t, double* backprop);
- void FinishBackward(const TransposedArray& errors_t);
- // Updates the weights using the given learning rate, momentum and adam_beta.
- // num_samples is used in the adam computation iff use_adam_ is true.
- void Update(float learning_rate, float momentum, float adam_beta,
- int num_samples) override;
- // Sums the products of weight updates in *this and other, splitting into
- // positive (same direction) in *same and negative (different direction) in
- // *changed.
- void CountAlternators(const Network& other, double* same,
- double* changed) const override;
- protected:
- // Weight arrays of size [no, ni + 1].
- WeightMatrix weights_;
- // Transposed copy of input used during training of size [ni, width].
- TransposedArray source_t_;
- // Pointer to transposed input stored elsewhere. If not null, this is used
- // in preference to calculating the transpose and storing it in source_t_.
- const TransposedArray* external_source_;
- // Activations from forward pass of size [width, no].
- NetworkIO acts_;
- // Memory of the integer mode input to forward as softmax always outputs
- // float, so the information is otherwise lost.
- bool int_mode_;
- };
- } // namespace tesseract.
- #endif // TESSERACT_LSTM_FULLYCONNECTED_H_
|