insert.hpp 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594
  1. // Boost.Geometry Index
  2. //
  3. // R-tree R*-tree insert algorithm implementation
  4. //
  5. // Copyright (c) 2011-2015 Adam Wulkiewicz, Lodz, Poland.
  6. //
  7. // Use, modification and distribution is subject to the Boost Software License,
  8. // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  9. // http://www.boost.org/LICENSE_1_0.txt)
  10. #ifndef BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  11. #define BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP
  12. #include <boost/core/ignore_unused.hpp>
  13. #include <boost/geometry/index/detail/algorithms/content.hpp>
  14. namespace boost { namespace geometry { namespace index {
  15. namespace detail { namespace rtree { namespace visitors {
  16. namespace rstar {
  17. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  18. class remove_elements_to_reinsert
  19. {
  20. public:
  21. typedef typename rtree::node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  22. typedef typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  23. typedef typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  24. typedef typename Options::parameters_type parameters_type;
  25. //typedef typename Allocators::internal_node_pointer internal_node_pointer;
  26. typedef internal_node * internal_node_pointer;
  27. template <typename ResultElements, typename Node>
  28. static inline void apply(ResultElements & result_elements,
  29. Node & n,
  30. internal_node_pointer parent,
  31. size_t current_child_index,
  32. parameters_type const& parameters,
  33. Translator const& translator,
  34. Allocators & allocators)
  35. {
  36. typedef typename rtree::elements_type<Node>::type elements_type;
  37. typedef typename elements_type::value_type element_type;
  38. typedef typename geometry::point_type<Box>::type point_type;
  39. // TODO: awulkiew - change second point_type to the point type of the Indexable?
  40. typedef typename
  41. geometry::default_comparable_distance_result<point_type>::type
  42. comparable_distance_type;
  43. elements_type & elements = rtree::elements(n);
  44. const size_t elements_count = parameters.get_max_elements() + 1;
  45. const size_t reinserted_elements_count = (::std::min)(parameters.get_reinserted_elements(), elements_count - parameters.get_min_elements());
  46. BOOST_GEOMETRY_INDEX_ASSERT(parent, "node shouldn't be the root node");
  47. BOOST_GEOMETRY_INDEX_ASSERT(elements.size() == elements_count, "unexpected elements number");
  48. BOOST_GEOMETRY_INDEX_ASSERT(0 < reinserted_elements_count, "wrong value of elements to reinsert");
  49. // calculate current node's center
  50. point_type node_center;
  51. geometry::centroid(rtree::elements(*parent)[current_child_index].first, node_center);
  52. // fill the container of centers' distances of children from current node's center
  53. typedef typename index::detail::rtree::container_from_elements_type<
  54. elements_type,
  55. std::pair<comparable_distance_type, element_type>
  56. >::type sorted_elements_type;
  57. sorted_elements_type sorted_elements;
  58. // If constructor is used instead of resize() MS implementation leaks here
  59. sorted_elements.reserve(elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  60. for ( typename elements_type::const_iterator it = elements.begin() ;
  61. it != elements.end() ; ++it )
  62. {
  63. point_type element_center;
  64. geometry::centroid( rtree::element_indexable(*it, translator), element_center);
  65. sorted_elements.push_back(std::make_pair(
  66. geometry::comparable_distance(node_center, element_center),
  67. *it)); // MAY THROW (V, E: copy)
  68. }
  69. // sort elements by distances from center
  70. std::partial_sort(
  71. sorted_elements.begin(),
  72. sorted_elements.begin() + reinserted_elements_count,
  73. sorted_elements.end(),
  74. distances_dsc<comparable_distance_type, element_type>); // MAY THROW, BASIC (V, E: copy)
  75. // copy elements which will be reinserted
  76. result_elements.clear();
  77. result_elements.reserve(reinserted_elements_count); // MAY THROW, STRONG (V, E: alloc, copy)
  78. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() ;
  79. it != sorted_elements.begin() + reinserted_elements_count ; ++it )
  80. {
  81. result_elements.push_back(it->second); // MAY THROW (V, E: copy)
  82. }
  83. BOOST_TRY
  84. {
  85. // copy remaining elements to the current node
  86. elements.clear();
  87. elements.reserve(elements_count - reinserted_elements_count); // SHOULDN'T THROW (new_size <= old size)
  88. for ( typename sorted_elements_type::const_iterator it = sorted_elements.begin() + reinserted_elements_count;
  89. it != sorted_elements.end() ; ++it )
  90. {
  91. elements.push_back(it->second); // MAY THROW (V, E: copy)
  92. }
  93. }
  94. BOOST_CATCH(...)
  95. {
  96. elements.clear();
  97. for ( typename sorted_elements_type::iterator it = sorted_elements.begin() ;
  98. it != sorted_elements.end() ; ++it )
  99. {
  100. destroy_element<Value, Options, Translator, Box, Allocators>::apply(it->second, allocators);
  101. }
  102. BOOST_RETHROW // RETHROW
  103. }
  104. BOOST_CATCH_END
  105. ::boost::ignore_unused(parameters);
  106. }
  107. private:
  108. template <typename Distance, typename El>
  109. static inline bool distances_asc(
  110. std::pair<Distance, El> const& d1,
  111. std::pair<Distance, El> const& d2)
  112. {
  113. return d1.first < d2.first;
  114. }
  115. template <typename Distance, typename El>
  116. static inline bool distances_dsc(
  117. std::pair<Distance, El> const& d1,
  118. std::pair<Distance, El> const& d2)
  119. {
  120. return d1.first > d2.first;
  121. }
  122. };
  123. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Box, typename Allocators>
  124. struct level_insert_elements_type
  125. {
  126. typedef typename rtree::elements_type<
  127. typename rtree::internal_node<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  128. >::type type;
  129. };
  130. template <typename Value, typename Options, typename Box, typename Allocators>
  131. struct level_insert_elements_type<0, Value, Value, Options, Box, Allocators>
  132. {
  133. typedef typename rtree::elements_type<
  134. typename rtree::leaf<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag>::type
  135. >::type type;
  136. };
  137. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  138. struct level_insert_base
  139. : public detail::insert<Element, Value, Options, Translator, Box, Allocators>
  140. {
  141. typedef detail::insert<Element, Value, Options, Translator, Box, Allocators> base;
  142. typedef typename base::node node;
  143. typedef typename base::internal_node internal_node;
  144. typedef typename base::leaf leaf;
  145. typedef typename level_insert_elements_type<InsertIndex, Element, Value, Options, Box, Allocators>::type elements_type;
  146. typedef typename index::detail::rtree::container_from_elements_type<
  147. elements_type,
  148. typename elements_type::value_type
  149. >::type result_elements_type;
  150. typedef typename Options::parameters_type parameters_type;
  151. typedef typename Allocators::node_pointer node_pointer;
  152. typedef typename Allocators::size_type size_type;
  153. inline level_insert_base(node_pointer & root,
  154. size_type & leafs_level,
  155. Element const& element,
  156. parameters_type const& parameters,
  157. Translator const& translator,
  158. Allocators & allocators,
  159. size_type relative_level)
  160. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  161. , result_relative_level(0)
  162. {}
  163. template <typename Node>
  164. inline void handle_possible_reinsert_or_split_of_root(Node &n)
  165. {
  166. BOOST_GEOMETRY_INDEX_ASSERT(result_elements.empty(), "reinsert should be handled only once for level");
  167. result_relative_level = base::m_leafs_level - base::m_traverse_data.current_level;
  168. // overflow
  169. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  170. {
  171. // node isn't root node
  172. if ( !base::m_traverse_data.current_is_root() )
  173. {
  174. // NOTE: exception-safety
  175. // After an exception result_elements may contain garbage, don't use it
  176. rstar::remove_elements_to_reinsert<Value, Options, Translator, Box, Allocators>::apply(
  177. result_elements, n,
  178. base::m_traverse_data.parent, base::m_traverse_data.current_child_index,
  179. base::m_parameters, base::m_translator, base::m_allocators); // MAY THROW, BASIC (V, E: alloc, copy)
  180. }
  181. // node is root node
  182. else
  183. {
  184. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<Node>(*base::m_root_node), "node should be the root node");
  185. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  186. }
  187. }
  188. }
  189. template <typename Node>
  190. inline void handle_possible_split(Node &n) const
  191. {
  192. // overflow
  193. if ( base::m_parameters.get_max_elements() < rtree::elements(n).size() )
  194. {
  195. base::split(n); // MAY THROW (V, E: alloc, copy, N: alloc)
  196. }
  197. }
  198. template <typename Node>
  199. inline void recalculate_aabb_if_necessary(Node const& n) const
  200. {
  201. if ( !result_elements.empty() && !base::m_traverse_data.current_is_root() )
  202. {
  203. // calulate node's new box
  204. recalculate_aabb(n);
  205. }
  206. }
  207. template <typename Node>
  208. inline void recalculate_aabb(Node const& n) const
  209. {
  210. base::m_traverse_data.current_element().first =
  211. elements_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(), base::m_translator);
  212. }
  213. inline void recalculate_aabb(leaf const& n) const
  214. {
  215. base::m_traverse_data.current_element().first =
  216. values_box<Box>(rtree::elements(n).begin(), rtree::elements(n).end(), base::m_translator);
  217. }
  218. size_type result_relative_level;
  219. result_elements_type result_elements;
  220. };
  221. template <size_t InsertIndex, typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  222. struct level_insert
  223. : public level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators>
  224. {
  225. typedef level_insert_base<InsertIndex, Element, Value, Options, Translator, Box, Allocators> base;
  226. typedef typename base::node node;
  227. typedef typename base::internal_node internal_node;
  228. typedef typename base::leaf leaf;
  229. typedef typename Options::parameters_type parameters_type;
  230. typedef typename Allocators::node_pointer node_pointer;
  231. typedef typename Allocators::size_type size_type;
  232. inline level_insert(node_pointer & root,
  233. size_type & leafs_level,
  234. Element const& element,
  235. parameters_type const& parameters,
  236. Translator const& translator,
  237. Allocators & allocators,
  238. size_type relative_level)
  239. : base(root, leafs_level, element, parameters, translator, allocators, relative_level)
  240. {}
  241. inline void operator()(internal_node & n)
  242. {
  243. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  244. if ( base::m_traverse_data.current_level < base::m_level )
  245. {
  246. // next traversing step
  247. base::traverse(*this, n); // MAY THROW (E: alloc, copy, N: alloc)
  248. // further insert
  249. if ( 0 < InsertIndex )
  250. {
  251. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  252. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  253. {
  254. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  255. }
  256. }
  257. }
  258. else
  259. {
  260. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level, "unexpected level");
  261. BOOST_TRY
  262. {
  263. // push new child node
  264. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (E: alloc, copy)
  265. }
  266. BOOST_CATCH(...)
  267. {
  268. // NOTE: exception-safety
  269. // if the insert fails above, the element won't be stored in the tree, so delete it
  270. rtree::visitors::destroy<Value, Options, Translator, Box, Allocators> del_v(base::m_element.second, base::m_allocators);
  271. rtree::apply_visitor(del_v, *base::m_element.second);
  272. BOOST_RETHROW // RETHROW
  273. }
  274. BOOST_CATCH_END
  275. // first insert
  276. if ( 0 == InsertIndex )
  277. {
  278. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  279. }
  280. // not the first insert
  281. else
  282. {
  283. base::handle_possible_split(n); // MAY THROW (E: alloc, N: alloc)
  284. }
  285. }
  286. base::recalculate_aabb_if_necessary(n);
  287. }
  288. inline void operator()(leaf &)
  289. {
  290. BOOST_GEOMETRY_INDEX_ASSERT(false, "this visitor can't be used for a leaf");
  291. }
  292. };
  293. template <size_t InsertIndex, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  294. struct level_insert<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  295. : public level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators>
  296. {
  297. typedef level_insert_base<InsertIndex, Value, Value, Options, Translator, Box, Allocators> base;
  298. typedef typename base::node node;
  299. typedef typename base::internal_node internal_node;
  300. typedef typename base::leaf leaf;
  301. typedef typename Options::parameters_type parameters_type;
  302. typedef typename Allocators::node_pointer node_pointer;
  303. typedef typename Allocators::size_type size_type;
  304. inline level_insert(node_pointer & root,
  305. size_type & leafs_level,
  306. Value const& v,
  307. parameters_type const& parameters,
  308. Translator const& translator,
  309. Allocators & allocators,
  310. size_type relative_level)
  311. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  312. {}
  313. inline void operator()(internal_node & n)
  314. {
  315. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level, "unexpected level");
  316. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level, "unexpected level");
  317. // next traversing step
  318. base::traverse(*this, n); // MAY THROW (V, E: alloc, copy, N: alloc)
  319. BOOST_GEOMETRY_INDEX_ASSERT(0 < base::m_level, "illegal level value, level shouldn't be the root level for 0 < InsertIndex");
  320. if ( base::m_traverse_data.current_level == base::m_level - 1 )
  321. {
  322. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (E: alloc, copy, N: alloc)
  323. }
  324. base::recalculate_aabb_if_necessary(n);
  325. }
  326. inline void operator()(leaf & n)
  327. {
  328. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  329. "unexpected level");
  330. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  331. base::m_level == (std::numeric_limits<size_t>::max)(),
  332. "unexpected level");
  333. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  334. base::handle_possible_split(n); // MAY THROW (V: alloc, copy, N: alloc)
  335. }
  336. };
  337. template <typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  338. struct level_insert<0, Value, Value, Options, Translator, Box, Allocators>
  339. : public level_insert_base<0, Value, Value, Options, Translator, Box, Allocators>
  340. {
  341. typedef level_insert_base<0, Value, Value, Options, Translator, Box, Allocators> base;
  342. typedef typename base::node node;
  343. typedef typename base::internal_node internal_node;
  344. typedef typename base::leaf leaf;
  345. typedef typename Options::parameters_type parameters_type;
  346. typedef typename Allocators::node_pointer node_pointer;
  347. typedef typename Allocators::size_type size_type;
  348. inline level_insert(node_pointer & root,
  349. size_type & leafs_level,
  350. Value const& v,
  351. parameters_type const& parameters,
  352. Translator const& translator,
  353. Allocators & allocators,
  354. size_type relative_level)
  355. : base(root, leafs_level, v, parameters, translator, allocators, relative_level)
  356. {}
  357. inline void operator()(internal_node & n)
  358. {
  359. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_leafs_level,
  360. "unexpected level");
  361. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level < base::m_level,
  362. "unexpected level");
  363. // next traversing step
  364. base::traverse(*this, n); // MAY THROW (V: alloc, copy, N: alloc)
  365. base::recalculate_aabb_if_necessary(n);
  366. }
  367. inline void operator()(leaf & n)
  368. {
  369. BOOST_GEOMETRY_INDEX_ASSERT(base::m_traverse_data.current_level == base::m_leafs_level,
  370. "unexpected level");
  371. BOOST_GEOMETRY_INDEX_ASSERT(base::m_level == base::m_traverse_data.current_level ||
  372. base::m_level == (std::numeric_limits<size_t>::max)(),
  373. "unexpected level");
  374. rtree::elements(n).push_back(base::m_element); // MAY THROW, STRONG (V: alloc, copy)
  375. base::handle_possible_reinsert_or_split_of_root(n); // MAY THROW (V: alloc, copy, N: alloc)
  376. base::recalculate_aabb_if_necessary(n);
  377. }
  378. };
  379. } // namespace rstar
  380. // R*-tree insert visitor
  381. // After passing the Element to insert visitor the Element is managed by the tree
  382. // I.e. one should not delete the node passed to the insert visitor after exception is thrown
  383. // because this visitor may delete it
  384. template <typename Element, typename Value, typename Options, typename Translator, typename Box, typename Allocators>
  385. class insert<Element, Value, Options, Translator, Box, Allocators, insert_reinsert_tag>
  386. : public rtree::visitor<Value, typename Options::parameters_type, Box, Allocators, typename Options::node_tag, false>::type
  387. {
  388. typedef typename Options::parameters_type parameters_type;
  389. typedef typename rtree::node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type node;
  390. typedef typename rtree::internal_node<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type internal_node;
  391. typedef typename rtree::leaf<Value, parameters_type, Box, Allocators, typename Options::node_tag>::type leaf;
  392. typedef typename Allocators::node_pointer node_pointer;
  393. typedef typename Allocators::size_type size_type;
  394. public:
  395. inline insert(node_pointer & root,
  396. size_type & leafs_level,
  397. Element const& element,
  398. parameters_type const& parameters,
  399. Translator const& translator,
  400. Allocators & allocators,
  401. size_type relative_level = 0)
  402. : m_root(root), m_leafs_level(leafs_level), m_element(element)
  403. , m_parameters(parameters), m_translator(translator)
  404. , m_relative_level(relative_level), m_allocators(allocators)
  405. {}
  406. inline void operator()(internal_node & n)
  407. {
  408. boost::ignore_unused(n);
  409. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<internal_node>(*m_root), "current node should be the root");
  410. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  411. if ( m_parameters.get_reinserted_elements() > 0 )
  412. {
  413. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  414. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  415. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  416. if ( !lins_v.result_elements.empty() )
  417. {
  418. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  419. }
  420. }
  421. else
  422. {
  423. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  424. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  425. rtree::apply_visitor(ins_v, *m_root);
  426. }
  427. }
  428. inline void operator()(leaf & n)
  429. {
  430. boost::ignore_unused(n);
  431. BOOST_GEOMETRY_INDEX_ASSERT(&n == &rtree::get<leaf>(*m_root), "current node should be the root");
  432. // Distinguish between situation when reinserts are required and use adequate visitor, otherwise use default one
  433. if ( m_parameters.get_reinserted_elements() > 0 )
  434. {
  435. rstar::level_insert<0, Element, Value, Options, Translator, Box, Allocators> lins_v(
  436. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  437. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  438. // we're in the root, so root should be split and there should be no elements to reinsert
  439. BOOST_GEOMETRY_INDEX_ASSERT(lins_v.result_elements.empty(), "unexpected state");
  440. }
  441. else
  442. {
  443. visitors::insert<Element, Value, Options, Translator, Box, Allocators, insert_default_tag> ins_v(
  444. m_root, m_leafs_level, m_element, m_parameters, m_translator, m_allocators, m_relative_level);
  445. rtree::apply_visitor(ins_v, *m_root);
  446. }
  447. }
  448. private:
  449. template <typename Elements>
  450. inline void recursive_reinsert(Elements & elements, size_t relative_level)
  451. {
  452. typedef typename Elements::value_type element_type;
  453. // reinsert children starting from the minimum distance
  454. typename Elements::reverse_iterator it = elements.rbegin();
  455. for ( ; it != elements.rend() ; ++it)
  456. {
  457. rstar::level_insert<1, element_type, Value, Options, Translator, Box, Allocators> lins_v(
  458. m_root, m_leafs_level, *it, m_parameters, m_translator, m_allocators, relative_level);
  459. BOOST_TRY
  460. {
  461. rtree::apply_visitor(lins_v, *m_root); // MAY THROW (V, E: alloc, copy, N: alloc)
  462. }
  463. BOOST_CATCH(...)
  464. {
  465. ++it;
  466. for ( ; it != elements.rend() ; ++it)
  467. rtree::destroy_element<Value, Options, Translator, Box, Allocators>::apply(*it, m_allocators);
  468. BOOST_RETHROW // RETHROW
  469. }
  470. BOOST_CATCH_END
  471. BOOST_GEOMETRY_INDEX_ASSERT(relative_level + 1 == lins_v.result_relative_level, "unexpected level");
  472. // non-root relative level
  473. if ( lins_v.result_relative_level < m_leafs_level && !lins_v.result_elements.empty())
  474. {
  475. recursive_reinsert(lins_v.result_elements, lins_v.result_relative_level); // MAY THROW (V, E: alloc, copy, N: alloc)
  476. }
  477. }
  478. }
  479. node_pointer & m_root;
  480. size_type & m_leafs_level;
  481. Element const& m_element;
  482. parameters_type const& m_parameters;
  483. Translator const& m_translator;
  484. size_type m_relative_level;
  485. Allocators & m_allocators;
  486. };
  487. }}} // namespace detail::rtree::visitors
  488. }}} // namespace boost::geometry::index
  489. #endif // BOOST_GEOMETRY_INDEX_DETAIL_RTREE_RSTAR_INSERT_HPP