| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264 |
- /*====================================================================*
- - Copyright (C) 2001 Leptonica. All rights reserved.
- -
- - Redistribution and use in source and binary forms, with or without
- - modification, are permitted provided that the following conditions
- - are met:
- - 1. Redistributions of source code must retain the above copyright
- - notice, this list of conditions and the following disclaimer.
- - 2. Redistributions in binary form must reproduce the above
- - copyright notice, this list of conditions and the following
- - disclaimer in the documentation and/or other materials
- - provided with the distribution.
- -
- - THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- - ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- - LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- - A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ANY
- - CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
- - EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
- - PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
- - PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
- - OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
- - NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- - SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *====================================================================*/
- #ifndef LEPTONICA_RECOG_H
- #define LEPTONICA_RECOG_H
- /*!
- * \file recog.h
- *
- * <pre>
- * This is a simple utility for training and recognizing individual
- * machine-printed text characters. It is designed to be adapted
- * to a particular set of character images; e.g., from a book.
- *
- * There are two methods of training the recognizer. In the most
- * simple, a set of bitmaps has been labeled by some means, such
- * a generic OCR program. This is input either one template at a time
- * or as a pixa of templates, to a function that creates a recog.
- * If in a pixa, the text string label must be embedded in the
- * text field of each pix.
- *
- * If labeled data is not available, we start with a bootstrap
- * recognizer (BSR) that has labeled data from a variety of sources.
- * These images are scaled, typically to a fixed height, and then
- * fed similarly scaled unlabeled images from the source (e.g., book),
- * and the BSR attempts to identify them. All images that have
- * a high enough correlation score with one of the templates in the
- * BSR are emitted in a pixa, which now holds unscaled and labeled
- * templates from the source. This is the generator for a book adapted
- * recognizer (BAR).
- *
- * The pixa should always be thought of as the primary structure.
- * It is the generator for the recog, because a recog is built
- * from a pixa of unscaled images.
- *
- * New image templates can be added to a recog as long as it is
- * in training mode. Once training is finished, to add templates
- * it is necessary to extract the generating pixa, add templates
- * to that pixa, and make a new recog. Similarly, we do not
- * join two recog; instead, we simply join their generating pixa,
- * and make a recog from that.
- *
- * To remove outliers from a pixa of labeled pix, make a recog,
- * determine the outliers, and generate a new pixa with the
- * outliers removed. The outliers are determined by building
- * special templates for each character set that are scaled averages
- * of the individual templates. Then a correlation score is found
- * between each template and the averaged templates. There are
- * two implementations; outliers are determined as either:
- * (1) a template having a correlation score with its class average
- * that is below a threshold, or
- * (2) a template having a correlation score with its class average
- * that is smaller than the correlation score with the average
- * of another class.
- * Outliers are removed from the generating pixa. Scaled averaging
- * is only performed for determining outliers and for splitting
- * characters; it is never used in a trained recognizer for identifying
- * unlabeled samples.
- *
- * Two methods using averaged templates are provided for splitting
- * touching characters:
- * (1) greedy matching
- * (2) document image decoding (DID)
- * The DID method is the default. It is about 5x faster and
- * possibly more accurate.
- *
- * Once a BAR has been made, unlabeled sample images are identified
- * by finding the individual template in the BAR with highest
- * correlation. The input images and images in the BAR can be
- * represented in two ways:
- * (1) as scanned, binarized to 1 bpp
- * (2) as a width-normalized outline formed by thinning to a
- * skeleton and then dilating by a fixed amount.
- *
- * The recog can be serialized to file and read back. The serialized
- * version holds the templates used for correlation (which may have
- * been modified by scaling and turning into lines from the unscaled
- * templates), plus, for arbitrary character sets, the UTF8
- * representation and the lookup table mapping from the character
- * representation to index.
- *
- * Why do we not use averaged templates for recognition?
- * Letterforms can take on significantly different shapes (eg.,
- * the letters 'a' and 'g'), and it makes no sense to average these.
- * The previous version of this utility allowed multiple recognizers
- * to exist, but this is an unnecessary complication if recognition
- * is done on all samples instead of on averages.
- * </pre>
- */
- #define RECOG_VERSION_NUMBER 2
- struct L_Recog {
- l_int32 scalew; /*!< scale all examples to this width; */
- /*!< use 0 prevent horizontal scaling */
- l_int32 scaleh; /*!< scale all examples to this height; */
- /*!< use 0 prevent vertical scaling */
- l_int32 linew; /*!< use a value > 0 to convert the bitmap */
- /*!< to lines of fixed width; 0 to skip */
- l_int32 templ_use; /*!< template use: use either the average */
- /*!< or all temmplates (L_USE_AVERAGE or */
- /*!< L_USE_ALL) */
- l_int32 maxarraysize; /*!< initialize container arrays to this */
- l_int32 setsize; /*!< size of character set */
- l_int32 threshold; /*!< for binarizing if depth > 1 */
- l_int32 maxyshift; /*!< vertical jiggle on nominal centroid */
- /*!< alignment; typically 0 or 1 */
- l_int32 charset_type; /*!< one of L_ARABIC_NUMERALS, etc. */
- l_int32 charset_size; /*!< expected number of classes in charset */
- l_int32 min_nopad; /*!< min number of samples without padding */
- l_int32 num_samples; /*!< number of training samples */
- l_int32 minwidth_u; /*!< min width averaged unscaled templates */
- l_int32 maxwidth_u; /*!< max width averaged unscaled templates */
- l_int32 minheight_u; /*!< min height averaged unscaled templates */
- l_int32 maxheight_u; /*!< max height averaged unscaled templates */
- l_int32 minwidth; /*!< min width averaged scaled templates */
- l_int32 maxwidth; /*!< max width averaged scaled templates */
- l_int32 ave_done; /*!< set to 1 when averaged bitmaps are made */
- l_int32 train_done; /*!< set to 1 when training is complete or */
- /*!< identification has started */
- l_float32 max_wh_ratio; /*!< max width/height ratio to split */
- l_float32 max_ht_ratio; /*!< max of max/min template height ratio */
- l_int32 min_splitw; /*!< min component width kept in splitting */
- l_int32 max_splith; /*!< max component height kept in splitting */
- struct Sarray *sa_text; /*!< text array for arbitrary char set */
- struct L_Dna *dna_tochar; /*!< index-to-char lut for arbitrary charset */
- l_int32 *centtab; /*!< table for finding centroids */
- l_int32 *sumtab; /*!< table for finding pixel sums */
- struct Pixaa *pixaa_u; /*!< all unscaled templates for each class */
- struct Ptaa *ptaa_u; /*!< centroids of all unscaled templates */
- struct Numaa *naasum_u; /*!< area of all unscaled templates */
- struct Pixaa *pixaa; /*!< all (scaled) templates for each class */
- struct Ptaa *ptaa; /*!< centroids of all (scaledl) templates */
- struct Numaa *naasum; /*!< area of all (scaled) templates */
- struct Pixa *pixa_u; /*!< averaged unscaled templates per class */
- struct Pta *pta_u; /*!< centroids of unscaled ave. templates */
- struct Numa *nasum_u; /*!< area of unscaled averaged templates */
- struct Pixa *pixa; /*!< averaged (scaled) templates per class */
- struct Pta *pta; /*!< centroids of (scaled) ave. templates */
- struct Numa *nasum; /*!< area of (scaled) averaged templates */
- struct Pixa *pixa_tr; /*!< all input training images */
- struct Pixa *pixadb_ave; /*!< unscaled and scaled averaged bitmaps */
- struct Pixa *pixa_id; /*!< input images for identifying */
- struct Pix *pixdb_ave; /*!< debug: best match of input against ave. */
- struct Pix *pixdb_range; /*!< debug: best matches within range */
- struct Pixa *pixadb_boot; /*!< debug: bootstrap training results */
- struct Pixa *pixadb_split; /*!< debug: splitting results */
- struct L_Bmf *bmf; /*!< bmf fonts */
- l_int32 bmf_size; /*!< font size of bmf; default is 6 pt */
- struct L_Rdid *did; /*!< temp data used for image decoding */
- struct L_Rch *rch; /*!< temp data used for holding best char */
- struct L_Rcha *rcha; /*!< temp data used for array of best chars */
- };
- typedef struct L_Recog L_RECOG;
- /*!
- * Data returned from correlation matching on a single character
- */
- struct L_Rch {
- l_int32 index; /*!< index of best template */
- l_float32 score; /*!< correlation score of best template */
- char *text; /*!< character string of best template */
- l_int32 sample; /*!< index of best sample (within the best */
- /*!< template class, if all samples are used) */
- l_int32 xloc; /*!< x-location of template (delx + shiftx) */
- l_int32 yloc; /*!< y-location of template (dely + shifty) */
- l_int32 width; /*!< width of best template */
- };
- typedef struct L_Rch L_RCH;
- /*!
- * Data returned from correlation matching on an array of characters
- */
- struct L_Rcha {
- struct Numa *naindex; /*!< indices of best templates */
- struct Numa *nascore; /*!< correlation scores of best templates */
- struct Sarray *satext; /*!< character strings of best templates */
- struct Numa *nasample; /*!< indices of best samples */
- struct Numa *naxloc; /*!< x-locations of templates (delx + shiftx) */
- struct Numa *nayloc; /*!< y-locations of templates (dely + shifty) */
- struct Numa *nawidth; /*!< widths of best templates */
- };
- typedef struct L_Rcha L_RCHA;
- /*!
- * Data used for decoding a line of characters.
- */
- struct L_Rdid {
- struct Pix *pixs; /*!< clone of pix to be decoded */
- l_int32 **counta; /*!< count array for each averaged template */
- l_int32 **delya; /*!< best y-shift array per average template */
- l_int32 narray; /*!< number of averaged templates */
- l_int32 size; /*!< size of count array (width of pixs) */
- l_int32 *setwidth; /*!< setwidths for each template */
- struct Numa *nasum; /*!< pixel count in pixs by column */
- struct Numa *namoment; /*!< first moment of pixels in pixs by cols */
- l_int32 fullarrays; /*!< 1 if full arrays are made; 0 otherwise */
- l_float32 *beta; /*!< channel coeffs for template fg term */
- l_float32 *gamma; /*!< channel coeffs for bit-and term */
- l_float32 *trellisscore; /*!< score on trellis */
- l_int32 *trellistempl; /*!< template on trellis (for backtrack) */
- struct Numa *natempl; /*!< indices of best path templates */
- struct Numa *naxloc; /*!< x locations of best path templates */
- struct Numa *nadely; /*!< y locations of best path templates */
- struct Numa *nawidth; /*!< widths of best path templates */
- struct Boxa *boxa; /*!< Viterbi result for splitting input pixs */
- struct Numa *nascore; /*!< correlation scores: best path templates */
- struct Numa *natempl_r; /*!< indices of best rescored templates */
- struct Numa *nasample_r; /*!< samples of best scored templates */
- struct Numa *naxloc_r; /*!< x locations of best rescoredtemplates */
- struct Numa *nadely_r; /*!< y locations of best rescoredtemplates */
- struct Numa *nawidth_r; /*!< widths of best rescoredtemplates */
- struct Numa *nascore_r; /*!< correlation scores: rescored templates */
- };
- typedef struct L_Rdid L_RDID;
- /*-------------------------------------------------------------------------*
- * Flags for describing limited character sets *
- *-------------------------------------------------------------------------*/
- /*! Flags for describing limited character sets */
- enum {
- L_UNKNOWN = 0, /*!< character set type is not specified */
- L_ARABIC_NUMERALS = 1, /*!< 10 digits */
- L_LC_ROMAN_NUMERALS = 2, /*!< 7 lower-case letters (i,v,x,l,c,d,m) */
- L_UC_ROMAN_NUMERALS = 3, /*!< 7 upper-case letters (I,V,X,L,C,D,M) */
- L_LC_ALPHA = 4, /*!< 26 lower-case letters */
- L_UC_ALPHA = 5 /*!< 26 upper-case letters */
- };
- /*-------------------------------------------------------------------------*
- * Flags for selecting between using average and all templates *
- *-------------------------------------------------------------------------*/
- /*! Flags for selecting average or all templates: recog->templ_use */
- enum {
- L_USE_ALL_TEMPLATES = 0, /*!< use all templates; default */
- L_USE_AVERAGE_TEMPLATES = 1 /*!< use average templates; special cases */
- };
- #endif /* LEPTONICA_RECOG_H */
|