| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- ///////////////////////////////////////////////////////////////////////
- // File: recodebeam.h
- // Description: Beam search to decode from the re-encoded CJK as a sequence of
- // smaller numbers in place of a single large code.
- // Author: Ray Smith
- //
- // (C) Copyright 2015, Google Inc.
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- // http://www.apache.org/licenses/LICENSE-2.0
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- //
- ///////////////////////////////////////////////////////////////////////
- #ifndef THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
- #define THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
- #include "dawg.h"
- #include "dict.h"
- #include "genericheap.h"
- #include "kdpair.h"
- #include "networkio.h"
- #include "ratngs.h"
- #include "unicharcompress.h"
- #include <deque>
- #include <set>
- #include <tuple>
- #include <vector>
- namespace tesseract {
- // Enum describing what can follow the current node.
- // Consider the following softmax outputs:
- // Timestep 0 1 2 3 4 5 6 7 8
- // X-score 0.01 0.55 0.98 0.42 0.01 0.01 0.40 0.95 0.01
- // Y-score 0.00 0.01 0.01 0.01 0.01 0.97 0.59 0.04 0.01
- // Null-score 0.99 0.44 0.01 0.57 0.98 0.02 0.01 0.01 0.98
- // Then the correct CTC decoding (in which adjacent equal classes are folded,
- // and then all nulls are dropped) is clearly XYX, but simple decoding (taking
- // the max at each timestep) leads to:
- // Null@0.99 X@0.55 X@0.98 Null@0.57 Null@0.98 Y@0.97 Y@0.59 X@0.95 Null@0.98,
- // which folds to the correct XYX. The conversion to Tesseract rating and
- // certainty uses the sum of the log probs (log of the product of probabilities)
- // for the Rating and the minimum log prob for the certainty, but that yields a
- // minimum certainty of log(0.55), which is poor for such an obvious case.
- // CTC says that the probability of the result is the SUM of the products of the
- // probabilities over ALL PATHS that decode to the same result, which includes:
- // NXXNNYYXN, NNXNNYYN, NXXXNYYXN, NNXXNYXXN, and others including XXXXXYYXX.
- // That is intractable, so some compromise between simple and ideal is needed.
- // Observing that evenly split timesteps rarely happen next to each other, we
- // allow scores at a transition between classes to be added for decoding thus:
- // N@0.99 (N+X)@0.99 X@0.98 (N+X)@0.99 N@0.98 Y@0.97 (X+Y+N)@1.00 X@0.95 N@0.98.
- // This works because NNX and NXX both decode to X, so in the middle we can use
- // N+X. Note that the classes either side of a sum must stand alone, i.e. use a
- // single score, to force all paths to pass through them and decode to the same
- // result. Also in the special case of a transition from X to Y, with only one
- // timestep between, it is possible to add X+Y+N, since XXY, XYY, and XNY all
- // decode to XY.
- // An important condition is that we cannot combine X and Null between two
- // stand-alone Xs, since that can decode as XNX->XX or XXX->X, so the scores for
- // X and Null have to go in separate paths. Combining scores in this way
- // provides a much better minimum certainty of log(0.95).
- // In the implementation of the beam search, we have to place the possibilities
- // X, X+N and X+Y+N in the beam under appropriate conditions of the previous
- // node, and constrain what can follow, to enforce the rules explained above.
- // We therefore have 3 different types of node determined by what can follow:
- enum NodeContinuation {
- NC_ANYTHING, // This node used just its own score, so anything can follow.
- NC_ONLY_DUP, // The current node combined another score with the score for
- // itself, without a stand-alone duplicate before, so must be
- // followed by a stand-alone duplicate.
- NC_NO_DUP, // The current node combined another score with the score for
- // itself, after a stand-alone, so can only be followed by
- // something other than a duplicate of the current node.
- NC_COUNT
- };
- // Enum describing the top-n status of a code.
- enum TopNState {
- TN_TOP2, // Winner or 2nd.
- TN_TOPN, // Runner up in top-n, but not 1st or 2nd.
- TN_ALSO_RAN, // Not in the top-n.
- TN_COUNT
- };
- // Lattice element for Re-encode beam search.
- struct RecodeNode {
- RecodeNode()
- : code(-1),
- unichar_id(INVALID_UNICHAR_ID),
- permuter(TOP_CHOICE_PERM),
- start_of_dawg(false),
- start_of_word(false),
- end_of_word(false),
- duplicate(false),
- certainty(0.0f),
- score(0.0f),
- prev(nullptr),
- dawgs(nullptr),
- code_hash(0) {}
- RecodeNode(int c, int uni_id, PermuterType perm, bool dawg_start,
- bool word_start, bool end, bool dup, float cert, float s,
- const RecodeNode* p, DawgPositionVector* d, uint64_t hash)
- : code(c),
- unichar_id(uni_id),
- permuter(perm),
- start_of_dawg(dawg_start),
- start_of_word(word_start),
- end_of_word(end),
- duplicate(dup),
- certainty(cert),
- score(s),
- prev(p),
- dawgs(d),
- code_hash(hash) {}
- // NOTE: If we could use C++11, then this would be a move constructor.
- // Instead we have copy constructor that does a move!! This is because we
- // don't want to copy the whole DawgPositionVector each time, and true
- // copying isn't necessary for this struct. It does get moved around a lot
- // though inside the heap and during heap push, hence the move semantics.
- RecodeNode(RecodeNode& src) : dawgs(nullptr) {
- *this = src;
- ASSERT_HOST(src.dawgs == nullptr);
- }
- RecodeNode& operator=(RecodeNode& src) {
- delete dawgs;
- memcpy(this, &src, sizeof(src));
- src.dawgs = nullptr;
- return *this;
- }
- ~RecodeNode() { delete dawgs; }
- // Prints details of the node.
- void Print(int null_char, const UNICHARSET& unicharset, int depth) const;
- // The re-encoded code here = index to network output.
- int code;
- // The decoded unichar_id is only valid for the final code of a sequence.
- int unichar_id;
- // The type of permuter active at this point. Intervals between start_of_word
- // and end_of_word make valid words of type given by permuter where
- // end_of_word is true. These aren't necessarily delimited by spaces.
- PermuterType permuter;
- // True if this is the initial dawg state. May be attached to a space or,
- // in a non-space-delimited lang, the end of the previous word.
- bool start_of_dawg;
- // True if this is the first node in a dictionary word.
- bool start_of_word;
- // True if this represents a valid candidate end of word position. Does not
- // necessarily mark the end of a word, since a word can be extended beyond a
- // candidate end by a continuation, eg 'the' continues to 'these'.
- bool end_of_word;
- // True if this->code is a duplicate of prev->code. Some training modes
- // allow the network to output duplicate characters and crush them with CTC,
- // but that would mess up the dictionary search, so we just smash them
- // together on the fly using the duplicate flag.
- bool duplicate;
- // Certainty (log prob) of (just) this position.
- float certainty;
- // Total certainty of the path to this position.
- float score;
- // The previous node in this chain. Borrowed pointer.
- const RecodeNode* prev;
- // The currently active dawgs at this position. Owned pointer.
- DawgPositionVector* dawgs;
- // A hash of all codes in the prefix and this->code as well. Used for
- // duplicate path removal.
- uint64_t code_hash;
- };
- using RecodePair = KDPairInc<double, RecodeNode>;
- using RecodeHeap = GenericHeap<RecodePair>;
- // Class that holds the entire beam search for recognition of a text line.
- class RecodeBeamSearch {
- public:
- // Borrows the pointer, which is expected to survive until *this is deleted.
- RecodeBeamSearch(const UnicharCompress& recoder, int null_char,
- bool simple_text, Dict* dict);
- // Decodes the set of network outputs, storing the lattice internally.
- // If charset is not null, it enables detailed debugging of the beam search.
- void Decode(const NetworkIO& output, double dict_ratio, double cert_offset,
- double worst_dict_cert, const UNICHARSET* charset,
- int lstm_choice_mode = 0);
- void Decode(const GENERIC_2D_ARRAY<float>& output, double dict_ratio,
- double cert_offset, double worst_dict_cert,
- const UNICHARSET* charset);
- // Returns the best path as labels/scores/xcoords similar to simple CTC.
- void ExtractBestPathAsLabels(GenericVector<int>* labels,
- GenericVector<int>* xcoords) const;
- // Returns the best path as unichar-ids/certs/ratings/xcoords skipping
- // duplicates, nulls and intermediate parts.
- void ExtractBestPathAsUnicharIds(bool debug, const UNICHARSET* unicharset,
- GenericVector<int>* unichar_ids,
- GenericVector<float>* certs,
- GenericVector<float>* ratings,
- GenericVector<int>* xcoords) const;
- // Returns the best path as a set of WERD_RES.
- void ExtractBestPathAsWords(const TBOX& line_box, float scale_factor,
- bool debug, const UNICHARSET* unicharset,
- PointerVector<WERD_RES>* words,
- int lstm_choice_mode = 0);
- // Generates debug output of the content of the beams after a Decode.
- void DebugBeams(const UNICHARSET& unicharset) const;
- // Stores the alternative characters of every timestep together with their
- // probability.
- std::vector< std::vector<std::pair<const char*, float>>> timesteps;
- // Clipping value for certainty inside Tesseract. Reflects the minimum value
- // of certainty that will be returned by ExtractBestPathAsUnicharIds.
- // Supposedly on a uniform scale that can be compared across languages and
- // engines.
- static const float kMinCertainty;
- // Number of different code lengths for which we have a separate beam.
- static const int kNumLengths = RecodedCharID::kMaxCodeLen + 1;
- // Total number of beams: dawg/nodawg * number of NodeContinuation * number
- // of different lengths.
- static const int kNumBeams = 2 * NC_COUNT * kNumLengths;
- // Returns the relevant factor in the beams_ index.
- static int LengthFromBeamsIndex(int index) { return index % kNumLengths; }
- static NodeContinuation ContinuationFromBeamsIndex(int index) {
- return static_cast<NodeContinuation>((index / kNumLengths) % NC_COUNT);
- }
- static bool IsDawgFromBeamsIndex(int index) {
- return index / (kNumLengths * NC_COUNT) > 0;
- }
- // Computes a beams_ index from the given factors.
- static int BeamIndex(bool is_dawg, NodeContinuation cont, int length) {
- return (is_dawg * NC_COUNT + cont) * kNumLengths + length;
- }
- private:
- // Struct for the Re-encode beam search. This struct holds the data for
- // a single time-step position of the output. Use a PointerVector<RecodeBeam>
- // to hold all the timesteps and prevent reallocation of the individual heaps.
- struct RecodeBeam {
- // Resets to the initial state without deleting all the memory.
- void Clear() {
- for (auto & beam : beams_) {
- beam.clear();
- }
- RecodeNode empty;
- for (auto & best_initial_dawg : best_initial_dawgs_) {
- best_initial_dawg = empty;
- }
- }
- // A separate beam for each combination of code length,
- // NodeContinuation, and dictionary flag. Separating out all these types
- // allows the beam to be quite narrow, and yet still have a low chance of
- // losing the best path.
- // We have to keep all these beams separate, since the highest scoring paths
- // come from the paths that are most likely to dead-end at any time, like
- // dawg paths, NC_ONLY_DUP etc.
- // Each heap is stored with the WORST result at the top, so we can quickly
- // get the top-n values.
- RecodeHeap beams_[kNumBeams];
- // While the language model is only a single word dictionary, we can use
- // word starts as a choke point in the beam, and keep only a single dict
- // start node at each step (for each NodeContinuation type), so we find the
- // best one here and push it on the heap, if it qualifies, after processing
- // all of the step.
- RecodeNode best_initial_dawgs_[NC_COUNT];
- };
- using TopPair = KDPairInc<float, int>;
- // Generates debug output of the content of a single beam position.
- void DebugBeamPos(const UNICHARSET& unicharset, const RecodeHeap& heap) const;
- // Returns the given best_nodes as unichar-ids/certs/ratings/xcoords skipping
- // duplicates, nulls and intermediate parts.
- static void ExtractPathAsUnicharIds(
- const GenericVector<const RecodeNode*>& best_nodes,
- GenericVector<int>* unichar_ids, GenericVector<float>* certs,
- GenericVector<float>* ratings, GenericVector<int>* xcoords,
- std::deque<std::tuple<int, int>>* best_choices = nullptr);
- // Sets up a word with the ratings matrix and fake blobs with boxes in the
- // right places.
- WERD_RES* InitializeWord(bool leading_space, const TBOX& line_box,
- int word_start, int word_end, float space_certainty,
- const UNICHARSET* unicharset,
- const GenericVector<int>& xcoords,
- float scale_factor);
- // Fills top_n_flags_ with bools that are true iff the corresponding output
- // is one of the top_n.
- void ComputeTopN(const float* outputs, int num_outputs, int top_n);
- // Adds the computation for the current time-step to the beam. Call at each
- // time-step in sequence from left to right. outputs is the activation vector
- // for the current timestep.
- void DecodeStep(const float* outputs, int t, double dict_ratio,
- double cert_offset, double worst_dict_cert,
- const UNICHARSET* charset, bool debug = false);
- //Saves the most certain choices for the current time-step
- void SaveMostCertainChoices(const float* outputs, int num_outputs, const UNICHARSET* charset, int xCoord);
- // Adds to the appropriate beams the legal (according to recoder)
- // continuations of context prev, which is from the given index to beams_,
- // using the given network outputs to provide scores to the choices. Uses only
- // those choices for which top_n_flags[code] == top_n_flag.
- void ContinueContext(const RecodeNode* prev, int index, const float* outputs,
- TopNState top_n_flag, const UNICHARSET* unicharset,
- double dict_ratio, double cert_offset,
- double worst_dict_cert, RecodeBeam* step);
- // Continues for a new unichar, using dawg or non-dawg as per flag.
- void ContinueUnichar(int code, int unichar_id, float cert,
- float worst_dict_cert, float dict_ratio, bool use_dawgs,
- NodeContinuation cont, const RecodeNode* prev,
- RecodeBeam* step);
- // Adds a RecodeNode composed of the args to the correct heap in step if
- // unichar_id is a valid dictionary continuation of whatever is in prev.
- void ContinueDawg(int code, int unichar_id, float cert, NodeContinuation cont,
- const RecodeNode* prev, RecodeBeam* step);
- // Sets the correct best_initial_dawgs_ with a RecodeNode composed of the args
- // if better than what is already there.
- void PushInitialDawgIfBetter(int code, int unichar_id, PermuterType permuter,
- bool start, bool end, float cert,
- NodeContinuation cont, const RecodeNode* prev,
- RecodeBeam* step);
- // Adds a RecodeNode composed of the args to the correct heap in step for
- // partial unichar or duplicate if there is room or if better than the
- // current worst element if already full.
- void PushDupOrNoDawgIfBetter(int length, bool dup, int code, int unichar_id,
- float cert, float worst_dict_cert,
- float dict_ratio, bool use_dawgs,
- NodeContinuation cont, const RecodeNode* prev,
- RecodeBeam* step);
- // Adds a RecodeNode composed of the args to the correct heap in step if there
- // is room or if better than the current worst element if already full.
- void PushHeapIfBetter(int max_size, int code, int unichar_id,
- PermuterType permuter, bool dawg_start, bool word_start,
- bool end, bool dup, float cert, const RecodeNode* prev,
- DawgPositionVector* d, RecodeHeap* heap);
- // Adds a RecodeNode to heap if there is room
- // or if better than the current worst element if already full.
- void PushHeapIfBetter(int max_size, RecodeNode* node, RecodeHeap* heap);
- // Searches the heap for an entry matching new_node, and updates the entry
- // with reshuffle if needed. Returns true if there was a match.
- bool UpdateHeapIfMatched(RecodeNode* new_node, RecodeHeap* heap);
- // Computes and returns the code-hash for the given code and prev.
- uint64_t ComputeCodeHash(int code, bool dup, const RecodeNode* prev) const;
- // Backtracks to extract the best path through the lattice that was built
- // during Decode. On return the best_nodes vector essentially contains the set
- // of code, score pairs that make the optimal path with the constraint that
- // the recoder can decode the code sequence back to a sequence of unichar-ids.
- void ExtractBestPaths(GenericVector<const RecodeNode*>* best_nodes,
- GenericVector<const RecodeNode*>* second_nodes) const;
- // Helper backtracks through the lattice from the given node, storing the
- // path and reversing it.
- void ExtractPath(const RecodeNode* node,
- GenericVector<const RecodeNode*>* path) const;
- // Helper prints debug information on the given lattice path.
- void DebugPath(const UNICHARSET* unicharset,
- const GenericVector<const RecodeNode*>& path) const;
- // Helper prints debug information on the given unichar path.
- void DebugUnicharPath(const UNICHARSET* unicharset,
- const GenericVector<const RecodeNode*>& path,
- const GenericVector<int>& unichar_ids,
- const GenericVector<float>& certs,
- const GenericVector<float>& ratings,
- const GenericVector<int>& xcoords) const;
- static const int kBeamWidths[RecodedCharID::kMaxCodeLen + 1];
- // The encoder/decoder that we will be using.
- const UnicharCompress& recoder_;
- // The beam for each timestep in the output.
- PointerVector<RecodeBeam> beam_;
- // The number of timesteps valid in beam_;
- int beam_size_;
- // A flag to indicate which outputs are the top-n choices. Current timestep
- // only.
- GenericVector<TopNState> top_n_flags_;
- // A record of the highest and second scoring codes.
- int top_code_;
- int second_code_;
- // Heap used to compute the top_n_flags_.
- GenericHeap<TopPair> top_heap_;
- // Borrowed pointer to the dictionary to use in the search.
- Dict* dict_;
- // True if the language is space-delimited, which is true for most languages
- // except chi*, jpn, tha.
- bool space_delimited_;
- // True if the input is simple text, ie adjacent equal chars are not to be
- // eliminated.
- bool is_simple_text_;
- // The encoded (class label) of the null/reject character.
- int null_char_;
- };
- } // namespace tesseract.
- #endif // THIRD_PARTY_TESSERACT_LSTM_RECODEBEAM_H_
|