series_expansion.hpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748
  1. // Boost.Geometry
  2. // Copyright (c) 2018 Adeel Ahmad, Islamabad, Pakistan.
  3. // Contributed and/or modified by Adeel Ahmad, as part of Google Summer of Code 2018 program.
  4. // Use, modification and distribution is subject to the Boost Software License,
  5. // Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
  6. // http://www.boost.org/LICENSE_1_0.txt)
  7. // This file is converted from GeographicLib, https://geographiclib.sourceforge.io
  8. // GeographicLib is originally written by Charles Karney.
  9. // Author: Charles Karney (2008-2017)
  10. // Last updated version of GeographicLib: 1.49
  11. // Original copyright notice:
  12. // Copyright (c) Charles Karney (2008-2017) <charles@karney.com> and licensed
  13. // under the MIT/X11 License. For more information, see
  14. // https://geographiclib.sourceforge.io
  15. #ifndef BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP
  16. #define BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP
  17. #include <boost/geometry/core/assert.hpp>
  18. #include <boost/geometry/util/math.hpp>
  19. namespace boost { namespace geometry { namespace series_expansion {
  20. /*
  21. Generate and evaluate the series expansion of the following integral
  22. I1 = integrate( sqrt(1+k2*sin(sigma1)^2), sigma1, 0, sigma )
  23. which is valid for k2 small. We substitute k2 = 4 * eps / (1 - eps)^2
  24. and expand (1 - eps) * I1 retaining terms up to order eps^maxpow
  25. in A1 and C1[l].
  26. The resulting series is of the form
  27. A1 * ( sigma + sum(C1[l] * sin(2*l*sigma), l, 1, maxpow) ).
  28. The scale factor A1-1 = mean value of (d/dsigma)I1 - 1
  29. The expansion above is performed in Maxima, a Computer Algebra System.
  30. The C++ code (that yields the function evaluate_A1 below) is
  31. generated by the following Maxima script:
  32. geometry/doc/other/maxima/geod.mac
  33. To replace each number x by CT(x) the following
  34. script can be used:
  35. sed -e 's/[0-9]\+/CT(&)/g; s/\[CT/\[/g; s/)\]/\]/g;
  36. s/case\sCT(/case /g; s/):/:/g; s/epsCT(2)/eps2/g;'
  37. */
  38. template <size_t SeriesOrder, typename CT>
  39. inline CT evaluate_A1(CT eps)
  40. {
  41. CT eps2 = math::sqr(eps);
  42. CT t;
  43. switch (SeriesOrder/2) {
  44. case 0:
  45. t = CT(0);
  46. break;
  47. case 1:
  48. t = eps2/CT(4);
  49. break;
  50. case 2:
  51. t = eps2*(eps2+CT(16))/CT(64);
  52. break;
  53. case 3:
  54. t = eps2*(eps2*(eps2+CT(4))+CT(64))/CT(256);
  55. break;
  56. case 4:
  57. t = eps2*(eps2*(eps2*(CT(25)*eps2+CT(64))+CT(256))+CT(4096))/CT(16384);
  58. break;
  59. }
  60. return (t + eps) / (CT(1) - eps);
  61. }
  62. /*
  63. Generate and evaluate the series expansion of the following integral
  64. I2 = integrate( 1/sqrt(1+k2*sin(sigma1)^2), sigma1, 0, sigma )
  65. which is valid for k2 small. We substitute k2 = 4 * eps / (1 - eps)^2
  66. and expand (1 - eps) * I2 retaining terms up to order eps^maxpow
  67. in A2 and C2[l].
  68. The resulting series is of the form
  69. A2 * ( sigma + sum(C2[l] * sin(2*l*sigma), l, 1, maxpow) )
  70. The scale factor A2-1 = mean value of (d/dsigma)2 - 1
  71. The expansion above is performed in Maxima, a Computer Algebra System.
  72. The C++ code (that yields the function evaluate_A2 below) is
  73. generated by the following Maxima script:
  74. geometry/doc/other/maxima/geod.mac
  75. */
  76. template <size_t SeriesOrder, typename CT>
  77. inline CT evaluate_A2(CT const& eps)
  78. {
  79. CT const eps2 = math::sqr(eps);
  80. CT t;
  81. switch (SeriesOrder/2) {
  82. case 0:
  83. t = CT(0);
  84. break;
  85. case 1:
  86. t = -CT(3)*eps2/CT(4);
  87. break;
  88. case 2:
  89. t = (-CT(7)*eps2-CT(48))*eps2/CT(64);
  90. break;
  91. case 3:
  92. t = eps2*((-CT(11)*eps2-CT(28))*eps2-CT(192))/CT(256);
  93. break;
  94. default:
  95. t = eps2*(eps2*((-CT(375)*eps2-CT(704))*eps2-CT(1792))-CT(12288))/CT(16384);
  96. break;
  97. }
  98. return (t - eps) / (CT(1) + eps);
  99. }
  100. /*
  101. Express
  102. I3 = integrate( (2-f)/(1+(1-f)*sqrt(1+k2*sin(sigma1)^2)), sigma1, 0, sigma )
  103. as a series
  104. A3 * ( sigma + sum(C3[l] * sin(2*l*sigma), l, 1, maxpow-1) )
  105. valid for f and k2 small. It is convenient to write k2 = 4 * eps / (1 -
  106. eps)^2 and f = 2*n/(1+n) and expand in eps and n. This procedure leads
  107. to a series where the coefficients of eps^j are terminating series in n.
  108. The scale factor A3 = mean value of (d/dsigma)I3
  109. The expansion above is performed in Maxima, a Computer Algebra System.
  110. The C++ code (that yields the function evaluate_coeffs_A3 below) is
  111. generated by the following Maxima script:
  112. geometry/doc/other/maxima/geod.mac
  113. */
  114. template <typename Coeffs, typename CT>
  115. inline void evaluate_coeffs_A3(Coeffs &c, CT const& n)
  116. {
  117. switch (int(Coeffs::static_size)) {
  118. case 0:
  119. break;
  120. case 1:
  121. c[0] = CT(1);
  122. break;
  123. case 2:
  124. c[0] = CT(1);
  125. c[1] = -CT(1)/CT(2);
  126. break;
  127. case 3:
  128. c[0] = CT(1);
  129. c[1] = (n-CT(1))/CT(2);
  130. c[2] = -CT(1)/CT(4);
  131. break;
  132. case 4:
  133. c[0] = CT(1);
  134. c[1] = (n-CT(1))/CT(2);
  135. c[2] = (-n-CT(2))/CT(8);
  136. c[3] = -CT(1)/CT(16);
  137. break;
  138. case 5:
  139. c[0] = CT(1);
  140. c[1] = (n-CT(1))/CT(2);
  141. c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8);
  142. c[3] = (-CT(3)*n-CT(1))/CT(16);
  143. c[4] = -CT(3)/CT(64);
  144. break;
  145. case 6:
  146. c[0] = CT(1);
  147. c[1] = (n-CT(1))/CT(2);
  148. c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8);
  149. c[3] = ((-n-CT(3))*n-CT(1))/CT(16);
  150. c[4] = (-CT(2)*n-CT(3))/CT(64);
  151. c[5] = -CT(3)/CT(128);
  152. break;
  153. case 7:
  154. c[0] = CT(1);
  155. c[1] = (n-CT(1))/CT(2);
  156. c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8);
  157. c[3] = (n*(n*(CT(5)*n-CT(1))-CT(3))-CT(1))/CT(16);
  158. c[4] = ((-CT(10)*n-CT(2))*n-CT(3))/CT(64);
  159. c[5] = (-CT(5)*n-CT(3))/CT(128);
  160. c[6] = -CT(5)/CT(256);
  161. break;
  162. default:
  163. c[0] = CT(1);
  164. c[1] = (n-CT(1))/CT(2);
  165. c[2] = (n*(CT(3)*n-CT(1))-CT(2))/CT(8);
  166. c[3] = (n*(n*(CT(5)*n-CT(1))-CT(3))-CT(1))/CT(16);
  167. c[4] = (n*((-CT(5)*n-CT(20))*n-CT(4))-CT(6))/CT(128);
  168. c[5] = ((-CT(5)*n-CT(10))*n-CT(6))/CT(256);
  169. c[6] = (-CT(15)*n-CT(20))/CT(1024);
  170. c[7] = -CT(25)/CT(2048);
  171. break;
  172. }
  173. }
  174. /*
  175. The coefficients C1[l] in the Fourier expansion of B1.
  176. The expansion below is performed in Maxima, a Computer Algebra System.
  177. The C++ code (that yields the function evaluate_coeffs_C1 below) is
  178. generated by the following Maxima script:
  179. geometry/doc/other/maxima/geod.mac
  180. */
  181. template <typename Coeffs, typename CT>
  182. inline void evaluate_coeffs_C1(Coeffs &c, CT const& eps)
  183. {
  184. CT eps2 = math::sqr(eps);
  185. CT d = eps;
  186. switch (int(Coeffs::static_size) - 1) {
  187. case 0:
  188. break;
  189. case 1:
  190. c[1] = -d/CT(2);
  191. break;
  192. case 2:
  193. c[1] = -d/CT(2);
  194. d *= eps;
  195. c[2] = -d/CT(16);
  196. break;
  197. case 3:
  198. c[1] = d*(CT(3)*eps2-CT(8))/CT(16);
  199. d *= eps;
  200. c[2] = -d/CT(16);
  201. d *= eps;
  202. c[3] = -d/CT(48);
  203. break;
  204. case 4:
  205. c[1] = d*(CT(3)*eps2-CT(8))/CT(16);
  206. d *= eps;
  207. c[2] = d*(eps2-CT(2))/CT(32);
  208. d *= eps;
  209. c[3] = -d/CT(48);
  210. d *= eps;
  211. c[4] = -CT(5)*d/CT(512);
  212. break;
  213. case 5:
  214. c[1] = d*((CT(6)-eps2)*eps2-CT(16))/CT(32);
  215. d *= eps;
  216. c[2] = d*(eps2-CT(2))/CT(32);
  217. d *= eps;
  218. c[3] = d*(CT(9)*eps2-CT(16))/CT(768);
  219. d *= eps;
  220. c[4] = -CT(5)*d/CT(512);
  221. d *= eps;
  222. c[5] = -CT(7)*d/CT(1280);
  223. break;
  224. case 6:
  225. c[1] = d*((CT(6)-eps2)*eps2-CT(16))/CT(32);
  226. d *= eps;
  227. c[2] = d*((CT(64)-CT(9)*eps2)*eps2-CT(128))/CT(2048);
  228. d *= eps;
  229. c[3] = d*(CT(9)*eps2-CT(16))/CT(768);
  230. d *= eps;
  231. c[4] = d*(CT(3)*eps2-CT(5))/CT(512);
  232. d *= eps;
  233. c[5] = -CT(7)*d/CT(1280);
  234. d *= eps;
  235. c[6] = -CT(7)*d/CT(2048);
  236. break;
  237. case 7:
  238. c[1] = d*(eps2*(eps2*(CT(19)*eps2-CT(64))+CT(384))-CT(1024))/CT(2048);
  239. d *= eps;
  240. c[2] = d*((CT(64)-CT(9)*eps2)*eps2-CT(128))/CT(2048);
  241. d *= eps;
  242. c[3] = d*((CT(72)-CT(9)*eps2)*eps2-CT(128))/CT(6144);
  243. d *= eps;
  244. c[4] = d*(CT(3)*eps2-CT(5))/CT(512);
  245. d *= eps;
  246. c[5] = d*(CT(35)*eps2-CT(56))/CT(10240);
  247. d *= eps;
  248. c[6] = -CT(7)*d/CT(2048);
  249. d *= eps;
  250. c[7] = -CT(33)*d/CT(14336);
  251. break;
  252. default:
  253. c[1] = d*(eps2*(eps2*(CT(19)*eps2-CT(64))+CT(384))-CT(1024))/CT(2048);
  254. d *= eps;
  255. c[2] = d*(eps2*(eps2*(CT(7)*eps2-CT(18))+CT(128))-CT(256))/CT(4096);
  256. d *= eps;
  257. c[3] = d*((CT(72)-CT(9)*eps2)*eps2-CT(128))/CT(6144);
  258. d *= eps;
  259. c[4] = d*((CT(96)-CT(11)*eps2)*eps2-CT(160))/CT(16384);
  260. d *= eps;
  261. c[5] = d*(CT(35)*eps2-CT(56))/CT(10240);
  262. d *= eps;
  263. c[6] = d*(CT(9)*eps2-CT(14))/CT(4096);
  264. d *= eps;
  265. c[7] = -CT(33)*d/CT(14336);
  266. d *= eps;
  267. c[8] = -CT(429)*d/CT(262144);
  268. break;
  269. }
  270. }
  271. /*
  272. The coefficients C1p[l] in the Fourier expansion of B1p.
  273. The expansion below is performed in Maxima, a Computer Algebra System.
  274. The C++ code (that yields the function evaluate_coeffs_C1p below) is
  275. generated by the following Maxima script:
  276. geometry/doc/other/maxima/geod.mac
  277. */
  278. template <typename Coeffs, typename CT>
  279. inline void evaluate_coeffs_C1p(Coeffs& c, CT const& eps)
  280. {
  281. CT const eps2 = math::sqr(eps);
  282. CT d = eps;
  283. switch (int(Coeffs::static_size) - 1) {
  284. case 0:
  285. break;
  286. case 1:
  287. c[1] = d/CT(2);
  288. break;
  289. case 2:
  290. c[1] = d/CT(2);
  291. d *= eps;
  292. c[2] = CT(5)*d/CT(16);
  293. break;
  294. case 3:
  295. c[1] = d*(CT(16)-CT(9)*eps2)/CT(32);
  296. d *= eps;
  297. c[2] = CT(5)*d/CT(16);
  298. d *= eps;
  299. c[3] = CT(29)*d/CT(96);
  300. break;
  301. case 4:
  302. c[1] = d*(CT(16)-CT(9)*eps2)/CT(32);
  303. d *= eps;
  304. c[2] = d*(CT(30)-CT(37)*eps2)/CT(96);
  305. d *= eps;
  306. c[3] = CT(29)*d/CT(96);
  307. d *= eps;
  308. c[4] = CT(539)*d/CT(1536);
  309. break;
  310. case 5:
  311. c[1] = d*(eps2*(CT(205)*eps2-CT(432))+CT(768))/CT(1536);
  312. d *= eps;
  313. c[2] = d*(CT(30)-CT(37)*eps2)/CT(96);
  314. d *= eps;
  315. c[3] = d*(CT(116)-CT(225)*eps2)/CT(384);
  316. d *= eps;
  317. c[4] = CT(539)*d/CT(1536);
  318. d *= eps;
  319. c[5] = CT(3467)*d/CT(7680);
  320. break;
  321. case 6:
  322. c[1] = d*(eps2*(CT(205)*eps2-CT(432))+CT(768))/CT(1536);
  323. d *= eps;
  324. c[2] = d*(eps2*(CT(4005)*eps2-CT(4736))+CT(3840))/CT(12288);
  325. d *= eps;
  326. c[3] = d*(CT(116)-CT(225)*eps2)/CT(384);
  327. d *= eps;
  328. c[4] = d*(CT(2695)-CT(7173)*eps2)/CT(7680);
  329. d *= eps;
  330. c[5] = CT(3467)*d/CT(7680);
  331. d *= eps;
  332. c[6] = CT(38081)*d/CT(61440);
  333. break;
  334. case 7:
  335. c[1] = d*(eps2*((CT(9840)-CT(4879)*eps2)*eps2-CT(20736))+CT(36864))/CT(73728);
  336. d *= eps;
  337. c[2] = d*(eps2*(CT(4005)*eps2-CT(4736))+CT(3840))/CT(12288);
  338. d *= eps;
  339. c[3] = d*(eps2*(CT(8703)*eps2-CT(7200))+CT(3712))/CT(12288);
  340. d *= eps;
  341. c[4] = d*(CT(2695)-CT(7173)*eps2)/CT(7680);
  342. d *= eps;
  343. c[5] = d*(CT(41604)-CT(141115)*eps2)/CT(92160);
  344. d *= eps;
  345. c[6] = CT(38081)*d/CT(61440);
  346. d *= eps;
  347. c[7] = CT(459485)*d/CT(516096);
  348. break;
  349. default:
  350. c[1] = d*(eps2*((CT(9840)-CT(4879)*eps2)*eps2-CT(20736))+CT(36864))/CT(73728);
  351. d *= eps;
  352. c[2] = d*(eps2*((CT(120150)-CT(86171)*eps2)*eps2-CT(142080))+CT(115200))/CT(368640);
  353. d *= eps;
  354. c[3] = d*(eps2*(CT(8703)*eps2-CT(7200))+CT(3712))/CT(12288);
  355. d *= eps;
  356. c[4] = d*(eps2*(CT(1082857)*eps2-CT(688608))+CT(258720))/CT(737280);
  357. d *= eps;
  358. c[5] = d*(CT(41604)-CT(141115)*eps2)/CT(92160);
  359. d *= eps;
  360. c[6] = d*(CT(533134)-CT(2200311)*eps2)/CT(860160);
  361. d *= eps;
  362. c[7] = CT(459485)*d/CT(516096);
  363. d *= eps;
  364. c[8] = CT(109167851)*d/CT(82575360);
  365. break;
  366. }
  367. }
  368. /*
  369. The coefficients C2[l] in the Fourier expansion of B2.
  370. The expansion below is performed in Maxima, a Computer Algebra System.
  371. The C++ code (that yields the function evaluate_coeffs_C2 below) is
  372. generated by the following Maxima script:
  373. geometry/doc/other/maxima/geod.mac
  374. */
  375. template <typename Coeffs, typename CT>
  376. inline void evaluate_coeffs_C2(Coeffs& c, CT const& eps)
  377. {
  378. CT const eps2 = math::sqr(eps);
  379. CT d = eps;
  380. switch (int(Coeffs::static_size) - 1) {
  381. case 0:
  382. break;
  383. case 1:
  384. c[1] = d/CT(2);
  385. break;
  386. case 2:
  387. c[1] = d/CT(2);
  388. d *= eps;
  389. c[2] = CT(3)*d/CT(16);
  390. break;
  391. case 3:
  392. c[1] = d*(eps2+CT(8))/CT(16);
  393. d *= eps;
  394. c[2] = CT(3)*d/CT(16);
  395. d *= eps;
  396. c[3] = CT(5)*d/CT(48);
  397. break;
  398. case 4:
  399. c[1] = d*(eps2+CT(8))/CT(16);
  400. d *= eps;
  401. c[2] = d*(eps2+CT(6))/CT(32);
  402. d *= eps;
  403. c[3] = CT(5)*d/CT(48);
  404. d *= eps;
  405. c[4] = CT(35)*d/CT(512);
  406. break;
  407. case 5:
  408. c[1] = d*(eps2*(eps2+CT(2))+CT(16))/CT(32);
  409. d *= eps;
  410. c[2] = d*(eps2+CT(6))/CT(32);
  411. d *= eps;
  412. c[3] = d*(CT(15)*eps2+CT(80))/CT(768);
  413. d *= eps;
  414. c[4] = CT(35)*d/CT(512);
  415. d *= eps;
  416. c[5] = CT(63)*d/CT(1280);
  417. break;
  418. case 6:
  419. c[1] = d*(eps2*(eps2+CT(2))+CT(16))/CT(32);
  420. d *= eps;
  421. c[2] = d*(eps2*(CT(35)*eps2+CT(64))+CT(384))/CT(2048);
  422. d *= eps;
  423. c[3] = d*(CT(15)*eps2+CT(80))/CT(768);
  424. d *= eps;
  425. c[4] = d*(CT(7)*eps2+CT(35))/CT(512);
  426. d *= eps;
  427. c[5] = CT(63)*d/CT(1280);
  428. d *= eps;
  429. c[6] = CT(77)*d/CT(2048);
  430. break;
  431. case 7:
  432. c[1] = d*(eps2*(eps2*(CT(41)*eps2+CT(64))+CT(128))+CT(1024))/CT(2048);
  433. d *= eps;
  434. c[2] = d*(eps2*(CT(35)*eps2+CT(64))+CT(384))/CT(2048);
  435. d *= eps;
  436. c[3] = d*(eps2*(CT(69)*eps2+CT(120))+CT(640))/CT(6144);
  437. d *= eps;
  438. c[4] = d*(CT(7)*eps2+CT(35))/CT(512);
  439. d *= eps;
  440. c[5] = d*(CT(105)*eps2+CT(504))/CT(10240);
  441. d *= eps;
  442. c[6] = CT(77)*d/CT(2048);
  443. d *= eps;
  444. c[7] = CT(429)*d/CT(14336);
  445. break;
  446. default:
  447. c[1] = d*(eps2*(eps2*(CT(41)*eps2+CT(64))+CT(128))+CT(1024))/CT(2048);
  448. d *= eps;
  449. c[2] = d*(eps2*(eps2*(CT(47)*eps2+CT(70))+CT(128))+CT(768))/CT(4096);
  450. d *= eps;
  451. c[3] = d*(eps2*(CT(69)*eps2+CT(120))+CT(640))/CT(6144);
  452. d *= eps;
  453. c[4] = d*(eps2*(CT(133)*eps2+CT(224))+CT(1120))/CT(16384);
  454. d *= eps;
  455. c[5] = d*(CT(105)*eps2+CT(504))/CT(10240);
  456. d *= eps;
  457. c[6] = d*(CT(33)*eps2+CT(154))/CT(4096);
  458. d *= eps;
  459. c[7] = CT(429)*d/CT(14336);
  460. d *= eps;
  461. c[8] = CT(6435)*d/CT(262144);
  462. break;
  463. }
  464. }
  465. /*
  466. The coefficients C3[l] in the Fourier expansion of B3.
  467. The expansion below is performed in Maxima, a Computer Algebra System.
  468. The C++ code (that yields the function evaluate_coeffs_C3 below) is
  469. generated by the following Maxima script:
  470. geometry/doc/other/maxima/geod.mac
  471. */
  472. template <size_t SeriesOrder, typename Coeffs, typename CT>
  473. inline void evaluate_coeffs_C3x(Coeffs &c, CT const& n) {
  474. size_t const coeff_size = Coeffs::static_size;
  475. size_t const expected_size = (SeriesOrder * (SeriesOrder - 1)) / 2;
  476. BOOST_GEOMETRY_ASSERT((coeff_size == expected_size));
  477. const CT n2 = math::sqr(n);
  478. switch (SeriesOrder) {
  479. case 0:
  480. break;
  481. case 1:
  482. break;
  483. case 2:
  484. c[0] = (CT(1)-n)/CT(4);
  485. break;
  486. case 3:
  487. c[0] = (CT(1)-n)/CT(4);
  488. c[1] = (CT(1)-n2)/CT(8);
  489. c[2] = ((n-CT(3))*n+CT(2))/CT(32);
  490. break;
  491. case 4:
  492. c[0] = (CT(1)-n)/CT(4);
  493. c[1] = (CT(1)-n2)/CT(8);
  494. c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64);
  495. c[3] = ((n-CT(3))*n+CT(2))/CT(32);
  496. c[4] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64);
  497. c[5] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192);
  498. break;
  499. case 5:
  500. c[0] = (CT(1)-n)/CT(4);
  501. c[1] = (CT(1)-n2)/CT(8);
  502. c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64);
  503. c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128);
  504. c[4] = ((n-CT(3))*n+CT(2))/CT(32);
  505. c[5] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64);
  506. c[6] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256);
  507. c[7] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192);
  508. c[8] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384);
  509. c[9] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024);
  510. break;
  511. case 6:
  512. c[0] = (CT(1)-n)/CT(4);
  513. c[1] = (CT(1)-n2)/CT(8);
  514. c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64);
  515. c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128);
  516. c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512);
  517. c[5] = ((n-CT(3))*n+CT(2))/CT(32);
  518. c[6] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64);
  519. c[7] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256);
  520. c[8] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256);
  521. c[9] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192);
  522. c[10] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384);
  523. c[11] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072);
  524. c[12] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024);
  525. c[13] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048);
  526. c[14] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120);
  527. break;
  528. case 7:
  529. c[0] = (CT(1)-n)/CT(4);
  530. c[1] = (CT(1)-n2)/CT(8);
  531. c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64);
  532. c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128);
  533. c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512);
  534. c[5] = (CT(10)*n+CT(21))/CT(1024);
  535. c[6] = ((n-CT(3))*n+CT(2))/CT(32);
  536. c[7] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64);
  537. c[8] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256);
  538. c[9] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256);
  539. c[10] = (CT(69)*n+CT(108))/CT(8192);
  540. c[11] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192);
  541. c[12] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384);
  542. c[13] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072);
  543. c[14] = (CT(12)-n)/CT(1024);
  544. c[15] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024);
  545. c[16] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048);
  546. c[17] = (CT(72)-CT(43)*n)/CT(8192);
  547. c[18] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120);
  548. c[19] = (CT(9)-CT(15)*n)/CT(1024);
  549. c[20] = (CT(44)-CT(99)*n)/CT(8192);
  550. break;
  551. default:
  552. c[0] = (CT(1)-n)/CT(4);
  553. c[1] = (CT(1)-n2)/CT(8);
  554. c[2] = (n*((-CT(5)*n-CT(1))*n+CT(3))+CT(3))/CT(64);
  555. c[3] = (n*((CT(2)-CT(2)*n)*n+CT(2))+CT(5))/CT(128);
  556. c[4] = (n*(CT(3)*n+CT(11))+CT(12))/CT(512);
  557. c[5] = (CT(10)*n+CT(21))/CT(1024);
  558. c[6] = CT(243)/CT(16384);
  559. c[7] = ((n-CT(3))*n+CT(2))/CT(32);
  560. c[8] = (n*(n*(CT(2)*n-CT(3))-CT(2))+CT(3))/CT(64);
  561. c[9] = (n*((-CT(6)*n-CT(9))*n+CT(2))+CT(6))/CT(256);
  562. c[10] = ((CT(1)-CT(2)*n)*n+CT(5))/CT(256);
  563. c[11] = (CT(69)*n+CT(108))/CT(8192);
  564. c[12] = CT(187)/CT(16384);
  565. c[13] = (n*((CT(5)-n)*n-CT(9))+CT(5))/CT(192);
  566. c[14] = (n*(n*(CT(10)*n-CT(6))-CT(10))+CT(9))/CT(384);
  567. c[15] = ((-CT(77)*n-CT(8))*n+CT(42))/CT(3072);
  568. c[16] = (CT(12)-n)/CT(1024);
  569. c[17] = CT(139)/CT(16384);
  570. c[18] = (n*((CT(20)-CT(7)*n)*n-CT(28))+CT(14))/CT(1024);
  571. c[19] = ((-CT(7)*n-CT(40))*n+CT(28))/CT(2048);
  572. c[20] = (CT(72)-CT(43)*n)/CT(8192);
  573. c[21] = CT(127)/CT(16384);
  574. c[22] = (n*(CT(75)*n-CT(90))+CT(42))/CT(5120);
  575. c[23] = (CT(9)-CT(15)*n)/CT(1024);
  576. c[24] = CT(99)/CT(16384);
  577. c[25] = (CT(44)-CT(99)*n)/CT(8192);
  578. c[26] = CT(99)/CT(16384);
  579. c[27] = CT(429)/CT(114688);
  580. break;
  581. }
  582. }
  583. /*
  584. \brief Given the set of coefficients coeffs2[] evaluate on
  585. C3 and return the set of coefficients coeffs1[].
  586. Elements coeffs1[1] through coeffs1[SeriesOrder - 1] are set.
  587. */
  588. template <typename Coeffs1, typename Coeffs2, typename CT>
  589. inline void evaluate_coeffs_C3(Coeffs1 &coeffs1, Coeffs2 &coeffs2, CT const& eps)
  590. {
  591. CT mult = 1;
  592. int offset = 0;
  593. // l is the index of C3[l].
  594. for (size_t l = 1; l < Coeffs1::static_size; ++l)
  595. {
  596. // Order of polynomial in eps.
  597. int m = Coeffs1::static_size - l;
  598. mult *= eps;
  599. coeffs1[l] = mult * math::horner_evaluate(eps, coeffs2.begin() + offset,
  600. coeffs2.begin() + offset + m);
  601. offset += m;
  602. }
  603. // Post condition: offset == coeffs_C3_size
  604. }
  605. /*
  606. \brief Evaluate the following:
  607. y = sum(c[i] * sin(2*i * x), i, 1, n)
  608. using Clenshaw summation.
  609. */
  610. template <typename CT, typename Coeffs>
  611. inline CT sin_cos_series(CT const& sinx, CT const& cosx, Coeffs const& coeffs)
  612. {
  613. size_t n = Coeffs::static_size - 1;
  614. size_t index = 0;
  615. // Point to one beyond last element.
  616. index += (n + 1);
  617. CT ar = 2 * (cosx - sinx) * (cosx + sinx);
  618. // If n is odd, get the last element.
  619. CT k0 = n & 1 ? coeffs[--index] : 0;
  620. CT k1 = 0;
  621. // Make n even.
  622. n /= 2;
  623. while (n--) {
  624. // Unroll loop x 2, so accumulators return to their original role.
  625. k1 = ar * k0 - k1 + coeffs[--index];
  626. k0 = ar * k1 - k0 + coeffs[--index];
  627. }
  628. return 2 * sinx * cosx * k0;
  629. }
  630. /*
  631. The coefficient containers for the series expansions.
  632. These structs allow the caller to only know the series order.
  633. */
  634. template <size_t SeriesOrder, typename CT>
  635. struct coeffs_C1 : boost::array<CT, SeriesOrder + 1>
  636. {
  637. coeffs_C1(CT const& epsilon)
  638. {
  639. evaluate_coeffs_C1(*this, epsilon);
  640. }
  641. };
  642. template <size_t SeriesOrder, typename CT>
  643. struct coeffs_C1p : boost::array<CT, SeriesOrder + 1>
  644. {
  645. coeffs_C1p(CT const& epsilon)
  646. {
  647. evaluate_coeffs_C1p(*this, epsilon);
  648. }
  649. };
  650. template <size_t SeriesOrder, typename CT>
  651. struct coeffs_C2 : boost::array<CT, SeriesOrder + 1>
  652. {
  653. coeffs_C2(CT const& epsilon)
  654. {
  655. evaluate_coeffs_C2(*this, epsilon);
  656. }
  657. };
  658. template <size_t SeriesOrder, typename CT>
  659. struct coeffs_C3x : boost::array<CT, (SeriesOrder * (SeriesOrder - 1)) / 2>
  660. {
  661. coeffs_C3x(CT const& n)
  662. {
  663. evaluate_coeffs_C3x<SeriesOrder>(*this, n);
  664. }
  665. };
  666. template <size_t SeriesOrder, typename CT>
  667. struct coeffs_C3 : boost::array<CT, SeriesOrder>
  668. {
  669. coeffs_C3(CT const& n, CT const& epsilon)
  670. {
  671. coeffs_C3x<SeriesOrder, CT> coeffs_C3x(n);
  672. evaluate_coeffs_C3(*this, coeffs_C3x, epsilon);
  673. }
  674. };
  675. template <size_t SeriesOrder, typename CT>
  676. struct coeffs_A3 : boost::array<CT, SeriesOrder>
  677. {
  678. coeffs_A3(CT const& n)
  679. {
  680. evaluate_coeffs_A3(*this, n);
  681. }
  682. };
  683. }}} // namespace boost::geometry::series_expansion
  684. #endif // BOOST_GEOMETRY_UTIL_SERIES_EXPANSION_HPP