| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304 |
- // ratio -*- C++ -*-
- // Copyright (C) 2008, 2009 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /** @file ratio
- * This is a Standard C++ Library header.
- */
- #ifndef _GLIBCXX_RATIO
- #define _GLIBCXX_RATIO 1
- #pragma GCC system_header
- #ifndef __GXX_EXPERIMENTAL_CXX0X__
- # include <c++0x_warning.h>
- #else
- #include <type_traits>
- #include <cstdint>
- #ifdef _GLIBCXX_USE_C99_STDINT_TR1
- namespace std
- {
- /**
- * @defgroup ratio Rational Arithmetic
- * @ingroup utilities
- *
- * Compile time representation of fininte rational numbers.
- * @{
- */
- template<intmax_t _Pn>
- struct __static_sign
- : integral_constant<intmax_t, (_Pn < 0) ? -1 : 1>
- { };
- template<intmax_t _Pn>
- struct __static_abs
- : integral_constant<intmax_t, _Pn * __static_sign<_Pn>::value>
- { };
- template<intmax_t _Pn, intmax_t _Qn>
- struct __static_gcd;
-
- template<intmax_t _Pn, intmax_t _Qn>
- struct __static_gcd
- : __static_gcd<_Qn, (_Pn % _Qn)>
- { };
- template<intmax_t _Pn>
- struct __static_gcd<_Pn, 0>
- : integral_constant<intmax_t, __static_abs<_Pn>::value>
- { };
- template<intmax_t _Qn>
- struct __static_gcd<0, _Qn>
- : integral_constant<intmax_t, __static_abs<_Qn>::value>
- { };
- // Let c = 2^(half # of bits in an intmax_t)
- // then we find a1, a0, b1, b0 s.t. N = a1*c + a0, M = b1*c + b0
- // The multiplication of N and M becomes,
- // N * M = (a1 * b1)c^2 + (a0 * b1 + b0 * a1)c + a0 * b0
- // Multiplication is safe if each term and the sum of the terms
- // is representable by intmax_t.
- template<intmax_t _Pn, intmax_t _Qn>
- struct __safe_multiply
- {
- private:
- static const uintmax_t __c = uintmax_t(1) << (sizeof(intmax_t) * 4);
- static const uintmax_t __a0 = __static_abs<_Pn>::value % __c;
- static const uintmax_t __a1 = __static_abs<_Pn>::value / __c;
- static const uintmax_t __b0 = __static_abs<_Qn>::value % __c;
- static const uintmax_t __b1 = __static_abs<_Qn>::value / __c;
- static_assert(__a1 == 0 || __b1 == 0,
- "overflow in multiplication");
- static_assert(__a0 * __b1 + __b0 * __a1 < (__c >> 1),
- "overflow in multiplication");
- static_assert(__b0 * __a0 <= __INTMAX_MAX__,
- "overflow in multiplication");
- static_assert((__a0 * __b1 + __b0 * __a1) * __c <=
- __INTMAX_MAX__ - __b0 * __a0, "overflow in multiplication");
- public:
- static const intmax_t value = _Pn * _Qn;
- };
- // Helpers for __safe_add
- template<intmax_t _Pn, intmax_t _Qn, bool>
- struct __add_overflow_check_impl
- : integral_constant<bool, (_Pn <= __INTMAX_MAX__ - _Qn)>
- { };
- template<intmax_t _Pn, intmax_t _Qn>
- struct __add_overflow_check_impl<_Pn, _Qn, false>
- : integral_constant<bool, (_Pn >= -__INTMAX_MAX__ - _Qn)>
- { };
- template<intmax_t _Pn, intmax_t _Qn>
- struct __add_overflow_check
- : __add_overflow_check_impl<_Pn, _Qn, (_Qn >= 0)>
- { };
- template<intmax_t _Pn, intmax_t _Qn>
- struct __safe_add
- {
- static_assert(__add_overflow_check<_Pn, _Qn>::value != 0,
- "overflow in addition");
- static const intmax_t value = _Pn + _Qn;
- };
- /**
- * @brief Provides compile-time rational arithmetic.
- *
- * This class template represents any finite rational number with a
- * numerator and denominator representable by compile-time constants of
- * type intmax_t. The ratio is simplified when instantiated.
- *
- * For example:
- * @code
- * std::ratio<7,-21>::num == -1;
- * std::ratio<7,-21>::den == 3;
- * @endcode
- *
- */
- template<intmax_t _Num, intmax_t _Den = 1>
- struct ratio
- {
- static_assert(_Den != 0, "denominator cannot be zero");
- static_assert(_Num >= -__INTMAX_MAX__ && _Den >= -__INTMAX_MAX__,
- "out of range");
- // Note: sign(N) * abs(N) == N
- static const intmax_t num =
- _Num * __static_sign<_Den>::value / __static_gcd<_Num, _Den>::value;
- static const intmax_t den =
- __static_abs<_Den>::value / __static_gcd<_Num, _Den>::value;
- };
- template<intmax_t _Num, intmax_t _Den>
- const intmax_t ratio<_Num, _Den>::num;
- template<intmax_t _Num, intmax_t _Den>
- const intmax_t ratio<_Num, _Den>::den;
- /// ratio_add
- template<typename _R1, typename _R2>
- struct ratio_add
- {
- private:
- static const intmax_t __gcd =
- __static_gcd<_R1::den, _R2::den>::value;
-
- public:
- typedef ratio<
- __safe_add<
- __safe_multiply<_R1::num, (_R2::den / __gcd)>::value,
- __safe_multiply<_R2::num, (_R1::den / __gcd)>::value>::value,
- __safe_multiply<_R1::den, (_R2::den / __gcd)>::value> type;
- };
- /// ratio_subtract
- template<typename _R1, typename _R2>
- struct ratio_subtract
- {
- typedef typename ratio_add<
- _R1,
- ratio<-_R2::num, _R2::den>>::type type;
- };
- /// ratio_multiply
- template<typename _R1, typename _R2>
- struct ratio_multiply
- {
- private:
- static const intmax_t __gcd1 =
- __static_gcd<_R1::num, _R2::den>::value;
- static const intmax_t __gcd2 =
- __static_gcd<_R2::num, _R1::den>::value;
- public:
- typedef ratio<
- __safe_multiply<(_R1::num / __gcd1),
- (_R2::num / __gcd2)>::value,
- __safe_multiply<(_R1::den / __gcd2),
- (_R2::den / __gcd1)>::value> type;
- };
- /// ratio_divide
- template<typename _R1, typename _R2>
- struct ratio_divide
- {
- static_assert(_R2::num != 0, "division by 0");
- typedef typename ratio_multiply<
- _R1,
- ratio<_R2::den, _R2::num>>::type type;
- };
- /// ratio_equal
- template<typename _R1, typename _R2>
- struct ratio_equal
- : integral_constant<bool, _R1::num == _R2::num && _R1::den == _R2::den>
- { };
-
- /// ratio_not_equal
- template<typename _R1, typename _R2>
- struct ratio_not_equal
- : integral_constant<bool, !ratio_equal<_R1, _R2>::value>
- { };
-
- template<typename _R1, typename _R2>
- struct __ratio_less_simple_impl
- : integral_constant<bool,
- (__safe_multiply<_R1::num, _R2::den>::value
- < __safe_multiply<_R2::num, _R1::den>::value)>
- { };
- // If the denominators are equal or the signs differ, we can just compare
- // numerators, otherwise fallback to the simple cross-multiply method.
- template<typename _R1, typename _R2>
- struct __ratio_less_impl
- : conditional<(_R1::den == _R2::den
- || (__static_sign<_R1::num>::value
- != __static_sign<_R2::num>::value)),
- integral_constant<bool, (_R1::num < _R2::num)>,
- __ratio_less_simple_impl<_R1, _R2>>::type
- { };
- /// ratio_less
- template<typename _R1, typename _R2>
- struct ratio_less
- : __ratio_less_impl<_R1, _R2>::type
- { };
-
- /// ratio_less_equal
- template<typename _R1, typename _R2>
- struct ratio_less_equal
- : integral_constant<bool, !ratio_less<_R2, _R1>::value>
- { };
-
- /// ratio_greater
- template<typename _R1, typename _R2>
- struct ratio_greater
- : integral_constant<bool, ratio_less<_R2, _R1>::value>
- { };
- /// ratio_greater_equal
- template<typename _R1, typename _R2>
- struct ratio_greater_equal
- : integral_constant<bool, !ratio_less<_R1, _R2>::value>
- { };
- typedef ratio<1, 1000000000000000000> atto;
- typedef ratio<1, 1000000000000000> femto;
- typedef ratio<1, 1000000000000> pico;
- typedef ratio<1, 1000000000> nano;
- typedef ratio<1, 1000000> micro;
- typedef ratio<1, 1000> milli;
- typedef ratio<1, 100> centi;
- typedef ratio<1, 10> deci;
- typedef ratio< 10, 1> deca;
- typedef ratio< 100, 1> hecto;
- typedef ratio< 1000, 1> kilo;
- typedef ratio< 1000000, 1> mega;
- typedef ratio< 1000000000, 1> giga;
- typedef ratio< 1000000000000, 1> tera;
- typedef ratio< 1000000000000000, 1> peta;
- typedef ratio< 1000000000000000000, 1> exa;
- // @} group ratio
- }
- #endif //_GLIBCXX_USE_C99_STDINT_TR1
- #endif //__GXX_EXPERIMENTAL_CXX0X__
- #endif //_GLIBCXX_RATIO
|